UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Automatic semantic parsing of the ground-plane in scenarios recorded with multiple moving cameras

Author
López Cifuentes, Alejandrountranslated; Escudero Viñolo, Marcosuntranslated; Bescos Cano, Jesúsuntranslated
Entity
UAM. Departamento de Tecnología Electrónica y de las Comunicaciones
Publisher
Institute of Electrical and Electronics Engineers
Date
2018-08-17
Citation
10.1109/LSP.2018.2865833
IEEE Signal Processing Letters 25.10 (2018): 1495 – 1499
 
 
 
ISSN
1070-9908 (print); 1558-2361 (online)
DOI
10.1109/LSP.2018.2865833
Funded by
This study has been partially supported by the Spanish Government through its TEC2014-53176-R HAVideo project
Project
Gobierno de España. TEC2014-53176-R
Editor's Version
https://doi.org/10.1109/LSP.2018.2865833
Subjects
Multiple moving cameras; Semantic segmentation; Area of interest; PTZ; Video surveillance; Scene parsing; Telecomunicaciones
URI
http://hdl.handle.net/10486/692467
Rights
© 2018 IEEE

Abstract

Nowadays, video surveillance scenarios usually rely on manually annotated focus areas to constrain automatic video analysis tasks. Whereas manual annotation simplifies several stages of the analysis, its use hinders the scalability of the developed solutions and might induce operational problems in scenarios recorded with Multiple and Moving Cameras (MMC). To tackle these problems, an automatic method for the cooperative extraction of Areas of Interest (AoIs) is proposed. Each captured frame is segmented into regions with semantic roles using a stateof- the-art method. Semantic evidences from different junctures, cameras and points-of-view are then spatio-temporally aligned on a common ground plane. Experimental results on widely-used datasets recorded with multiple but static cameras suggest that this process provides broader and more accurate AoIs than those manually defined in the datasets. Moreover, the proposed method naturally determines the projection of obstacles and functional objects in the scene, paving the road towards systems focused on the automatic analysis of human behaviour. To our knowledge, this is the first study dealing with this problematic, as evidenced by the lack of publicly available MMC benchmarks. To also cope with this issue, we provide a new MMC dataset with associated semantic scene annotations
Show full item record

Files in this item

Thumbnail
Name
automatic_lopez_ieeespl_2018_ps.pdf
Size
10.49Mb
Format
PDF

Refworks Export

Google™ Scholar:López Cifuentes, Alejandro - Escudero Viñolo, Marcos - Bescos Cano, Jesús

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17775]

Related items

Showing items related by title, author, creator and subject.

  • Semantic-driven multi-camera pedestrian detection 

    López Cifuentes, AlejandroAutoridad UAM; Escudero Viñolo, MarcosAutoridad UAM; Bescos Cano, JesúsAutoridad UAM; Carballeira López, PabloAutoridad UAM
    2022-05-01
  • Semantic-aware scene recognition 

    López Cifuentes, AlejandroAutoridad UAM; Escudero Viñolo, MarcosAutoridad UAM; Bescos Cano, JesúsAutoridad UAM; García Martín, ÁlvaroAutoridad UAM
    2020-06-01
  • Towards automatic waste containers management in cities via computer vision: containers localization and geo-positioning in city maps 

    Moral De Eusebio, PaulaAutoridad UAM; García Martín, ÁlvaroAutoridad UAM; Escudero Viñolo, MarcosAutoridad UAM; Martínez Sánchez, José MaríaAutoridad UAM; Bescos Cano, JesúsAutoridad UAM; Peñuela, Jesús; Martínez, Juan Carlos; Alvis, Gonzalo
    2022-08-16
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad