UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 2 - Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • View Item
  •   Biblos-e Archivo
  • 2 - Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • View Item

A systems biology study to understand the dynamics of progenitor cells populations in the tissue development

Title (trans.)
Un estudio de biología de sistemas para entender la dinámica de poblaciones de células progenitoras en la formación de tejidos durante el desarrollo embrionario
Author
Ledesma Terrón, Mariountranslated
Advisor
Miguez Gómez, Daviduntranslated
Entity
UAM. Departamento de Física de la Materia Condensada; Centro de Biología Molecular Severo Ochoa (CBM)
Date
2021-04-15
Subjects
Genética del desarrollo; Células madre; Biología de sistemas; Física
URI
http://hdl.handle.net/10486/696625
Note
Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física de la Materia Condensada. Fecha de lectura: 15-04-2021
Esta tesis tiene embargado el acceso al texto completo hasta el 15-04-2022

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Abstract

Embryonic development begins with a cell formed by the union of two sex cells, and ends with a multicellular organism with specialized and diverse functions and shapes. Organogenesis is the integration of spatial and temporal programs with the purpose to generate the mature version of the organ. Concretely, some tissues as the Neural Retina, the Pigmentary Epithelium of the Retina, the Spinal Cord or the Neocortex comes from the anterior region of the neural tube, a structure whose origin is the anterior axis of the embryonic layer of the ectoderm (neuroectoderm). For an important part of all these tissues, the molecular processes that underlie cellular decisions have been extensively characterized. Basically, three activities must happen in the tissue development: the growing in size (proliferation), the specialization in one or more specific functions (differentiate) and the coordination of cell movements to acquire a specific final shape (morphogenesis). Progenitor cells are those cells that have the ability to divide and increase the number of cells, while differentiated cells are those that have acquired a specific function and they are not able to divide into new cells. The action of the whole set of progenitor cells is the responsible to regulate the number of new differentiated and progenitor cells (proliferation), while the sets of differentiated cells is the responsible of the acquisition of specific function. In fact, the function of the organ and the ability to increase in growth or produce more cells (i.e balance between growth and differentiation) can not only be interpreted as the sum of function of each cell. Therefore, research about the behaviour, regulation and properties for all populations of progenitor cells is key to understanding the balance between proliferation (the system generates new progenitor cells) and differentiation (the system generates new differentiated cells) of the embryo development. The descents of the progenitor cells pool along the development regulates the rate between proliferation and differentiation of the tissue. Therefore, it is not only essential to understand the biology of progenitor and differentiated cells, but it is also essential to understand how the union of many progenitor cells works to form a complex system, such as a tissue or an organ. In this thesis, I will intend to answer two major questions: how the proliferation and differentiation of progenitor cell pools is regulated in space-time? And how can we use quantitative tools to analyze this balance?. To do this, we have used two model organisms (Danio rerio and Mus musculus), a theoretical approach based on Markov’s chains, and we have developed computational analysis tools for biological images
Show full item record

Files in this item

Thumbnail
Name
ledesma_terron_mario.pdf
Size
36.62Mb
Format
PDF
Description
Texto de la Tesis Doctoral

Refworks Export

Google™ Scholar:Ledesma Terrón, Mario

This item appears in the following Collection(s)

  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.) [19853]

Related items

Showing items related by title, author, creator and subject.

  • Quantitative approaches to study retinal neurogenesis 

    Pérez-Dones, Diego; Ledesma Terrón, MarioAutoridad UAM; Miguez Gómez, DavidAutoridad UAM
    2021-09-14
  • Preparation and development of new bioactive resorbable polymeric systems loaded with bemiparin for drug delivery and tissue engineering 

    Reyes Ortega, Felisa
    2013-07-22
  • Are we studying the right populations to understand suicide? 

    López-Castromán, Jorge; Blasco-Fontecilla, Hilario; Courtet, Philippe; Baca García, EnriqueAutoridad UAM; Oquendo, María A.
    2015-10
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad