Show simple item record

dc.contributor.authorPinilla, Sergio
dc.contributor.authorPark, Sang-Hoon
dc.contributor.authorFontanez, Kenneth
dc.contributor.authorMárquez, Francisco
dc.contributor.authorNicolosi, Valeria
dc.contributor.authorMorant, Carmen
dc.contributor.otherUAM. Departamento de Física Aplicadaes_ES
dc.date.accessioned2021-10-26T13:59:37Z
dc.date.available2021-10-26T13:59:37Z
dc.date.issued2020-03-12
dc.identifier.citationNanomaterials 10.3 (2020): 515en_US
dc.identifier.issn2079-4991 (online)en_US
dc.identifier.urihttp://hdl.handle.net/10486/698481
dc.description.abstractLithium ion batteries (LIBs) are the enabling technology for many of the societal changes that are expected to happen in the following years. Among all the challenges for which LIBs are the key, vehicle electrification is one of the most crucial. Current battery materials cannot provide the required power densities for such applications and therefore, it makes necessary to develop new materials. Silicon is one of the proposed as next generation battery materials, but still there are challenges to overcome. Poor capacity retention is one of those drawbacks, and because it is tightly related with its high capacity, it is a problem rather difficult to address with common and scalable fabrication processes. Here we show that combining 0D and 1D silicon nanostructures, high capacity and stability can be achieved even using standard electrode fabrication processes. Capacities as high as 1200 mAh/g for more than 500 cycles at high current densities (2 A/g) were achieved with the produced hybrid 0D/1D electrodes. In this research, it was shown that while 0D nanostructures provide good strain relaxation capabilities, 1D nanomaterials contribute with enhanced cohesion and conductive matrix integrityen_US
dc.description.sponsorshipThis research was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 713567 and Science Foundation Irelands Research Centre award 12/RC/2278_P2. This work was supported by the Ministerio de Economía y Competitividad (MINECO) of Spain, under Grant ENE2014-57977-C2-1-R and “Estancias de Movilidad Salvador Madariaga”. Financial support from the U.S. Department of Defense (grant W911NF-14-1-0046), and from the U.S. Department of Energy, through the Consortium for Integrating Energy Systems in Engineering and Science Education, CIESESE (DE-NA0003330) is also acknowledgeden_US
dc.format.extent13 pag.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofNanomaterialsen_US
dc.rights© 2020 by the authorsen_US
dc.subject.otherSiliconen_US
dc.subject.otherLithium ion batteriesen_US
dc.subject.otherNanomaterialsen_US
dc.subject.other0Des_ES
dc.subject.other1Des_ES
dc.title0D-1D hybrid silicon nanocomposite as lithium-ion batteries anodesen_US
dc.typearticleen_US
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttps://doi.org/10.3390/nano10030515es_ES
dc.identifier.doi10.3390/nano10030515es_ES
dc.identifier.publicationfirstpage515-1es_ES
dc.identifier.publicationissue3es_ES
dc.identifier.publicationlastpage515-13es_ES
dc.identifier.publicationvolume10es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/713567es_ES
dc.relation.projectIDGobierno de España. ENE2014-57977-C2-1-Res_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccesses_ES
dc.authorUAMPinilla Yanguas, Sergio (314964)
dc.authorUAMMorant Zacarés, Carmen (258590)
dc.facultadUAMFacultad de Ciencias
dc.institutoUAMInstituto Universitario de Ciencia de Materiales Nicolás Cabrera (INC)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record