Show simple item record

dc.contributor.authorVilhena Albuquerque D'Orey, José Guilherme 
dc.contributor.authorOrtega, Maria
dc.contributor.authorUhlig, Manuel R.
dc.contributor.authorGarcia, Ricardo
dc.contributor.authorPérez Pérez, Rubén 
dc.contributor.otherUAM. Departamento de Física Teórica de la Materia Condensadaes_ES
dc.date.accessioned2021-12-04T20:30:17Z
dc.date.available2021-12-04T20:30:17Z
dc.date.issued2021-01-27
dc.identifier.citationACS Sensors 6.2 (2021): 553-564en_US
dc.identifier.issn2379-3694 (online)en_US
dc.identifier.urihttp://hdl.handle.net/10486/699080
dc.description.abstractAtomic force microscopy is an invaluable characterization tool in almost every biophysics laboratory. However, obtaining atomic/sub-nanometer resolution on single proteins has thus far remained elusive - a feat long achieved on hard substrates. In this regard, nanomechanical spectroscopy mapping may provide a viable approach to overcome this limitation. By complementing topography with mechanical properties measured locally, one may thus enhance spatial resolution at the single-protein level. In this work, we perform all-atom molecular dynamics simulations of the indentation process on a single immunoglobulin G (IgG) adsorbed on a graphene slab. Our simulations reveal three different stages as a function of strain: a noncontact regime - where the mechanical response is linked to the presence of the water environment - followed by an elastic response and a final plastic deformation regime. In the noncontact regime, we are able to identify hydrophobic/hydrophilic patches over the protein. This regime provides the most local mechanical information that allows one to discern different regions with similar height/topography and leads to the best spatial resolution. In the elastic regime, we conclude that the Young modulus is a well-defined property only within mechanically decoupled domains. This is caused by the fact that the elastic deformation is associated with a global reorganization of the domain. Differences in the mechanical response are large enough to clearly resolve domains within a single protein, such as the three subunits forming the IgG. Two events, unfolding or protein slipping, are observed in the plastic regime. Our simulations allow us to characterize these two processes and to provide a strategy to identify them in the force curves. Finally, we elaborate on possible challenges that could hamper the interpretation of such experiments/simulations and how to overcome them. All in all, our simulations provide a detailed picture of nanomechanical spectroscopy mapping on single proteins, showing its potential and the challenges that need to be overcome to unlock its full potentialen_US
dc.description.sponsorshipJ.G.V. acknowledges funding from a Marie Sklodowska-Curie Fellowship within the Horizon 2020 framework (Grant No. DLV-795286) and the Swiss National Science Foundation (Grant No. CRSK-2 190731/1). R.P. acknowledges support from the Spanish MINECO (Grant No. MAT2017-83273-R) and from the Ministerio de Ciencia e Innovación (MICINN) through the “María de Maeztu” Programme for Units of Excellence in R&D (Grant No. CEX2018-000805-M). R.G. acknowledges funding from the MICINN (Grant No. PID2019-106801GB-I00) and Comunidad de Madrid Grant No. S2018/NMT-4443 (Tec4Bio-CM). We thankfully acknowledge the computer resources, technical expertise, and assistance provided by the Red Española de Supercomputación (RES) at the Minotauro and CTE-Power9 supercomputers (BSC, Barcelona). We thank Dr. Alejandro Martín-González for fruitful discussionses_ES
dc.format.extent12 pag.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofACS Sensorsen_US
dc.rights© 2021 American Chemical Societyen_US
dc.subject.otherYoung modulusen_US
dc.subject.otherMechanical responseen_US
dc.subject.otherAtomic force microscopyen_US
dc.subject.otherMolecular dynamicsen_US
dc.subject.otherAntibodiesen_US
dc.subject.otherImmunoglobulinen_US
dc.subject.otherHydration layersen_US
dc.titlePractical guide to single-protein AFM nanomechanical spectroscopy mapping: insights and pitfalls as unraveled by all-atom MD simulations on immunoglobulin Gen_US
dc.typearticleen_US
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttps://10.1021/acssensors.0c02241es_ES
dc.identifier.doi10.1021/acssensors.0c02241es_ES
dc.identifier.publicationfirstpage553es_ES
dc.identifier.publicationissue2es_ES
dc.identifier.publicationlastpage564es_ES
dc.identifier.publicationvolume6es_ES
dc.relation.projectIDGobierno de España. MAT2017-83273-Res_ES
dc.relation.projectIDGobierno de España. CEX2018-000805-Mes_ES
dc.relation.projectIDGobierno de España. PID2019-106801GB-I00es_ES
dc.relation.projectIDInfo:eu-repo/grantAgreement/EC/H2020/795286//EU//MolNanoTribologyes_ES
dc.relation.projectIDComunidad de Madrid. S2018/NMT-4443/Tec4Bio-CMes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccesses_ES
dc.authorUAMVilhena Albuquerque D'Orey, José Guilherme (264776)
dc.authorUAMPérez Pérez, Rubén (258655)
dc.facultadUAMFacultad de Ciencias


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record