UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 2 - Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • View Item
  •   Biblos-e Archivo
  • 2 - Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • View Item

Generative Adversarial Neural Networks: A Pictorial Approach

Author
Martínez Morales, Álvaro
Advisor
Dorronsoro Ibero, José Ramónuntranslated
Entity
UAM. Departamento de Ingeniería Informática
Date
2021-06
Subjects
Deep Learning; Machine Learning; Artifcial Intelligence; Informática
URI
http://hdl.handle.net/10486/700047

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Abstract

This current work explores the basis of the ambit of Generative Modeling approached through Adversarial Neural Networks. The project starts by introducing Discriminative and Generative Modelling, both explained and set apart from one another, so that the latest, which is the main focus of this work, can be properly understood. Then, examples of Deep Learning architectures modeled as means to approach this kind of modeling, through a setting inspired in Game Theory, are showcased. In the end, a proof of concept to showcase the capabilities of this kind of approaches, capable of learning to reproduce the work of pictorial artist, referred to as PictorialGAN, is presented. In the annex there are references to the theoretical ambit over which this work rises, a whole detailed explanation of Multilayer Perceptrons, as well as the practical bricks used during the development of the project, those being the computational environment and the datasets used to test the models.
Show full item record

Files in this item

Thumbnail
Name
martinez_morales_alvaro_tfg.pdf
Size
25.56Mb
Format
PDF

Refworks Export

Google™ Scholar:Martínez Morales, Álvaro

This item appears in the following Collection(s)

  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.) [19713]

Related items

Showing items related by title, author, creator and subject.

  • Quantum state tomography with conditional generative adversarial networks 

    Ahmed, S.; Sánchez Muñoz, CarlosAutoridad UAM; Nori, F.; Kockum, A.F.
    2021-09-27
  • Dynamics of fourier modes in torus generative adversarial networks 

    González-Prieto, Ángel; Mozo, Alberto; Talavera, Edgar; Gómez-Canaval, Sandra
    2021-02-06
  • An end-to-end approach to language identification in short utterances using convolutional neural networks 

    Lozano Díez, AliciaAutoridad UAM; Zazo Candil, RubénAutoridad UAM; González Domínguez, Javier; Toledano, Doroteo T.; González Rodríguez, JoaquínAutoridad UAM
    2015-01
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad