Show simple item record

dc.contributor.authorCandela Pokorna, Pablo 
dc.contributor.authorCatalá, Carlos
dc.contributor.authorHancock, Robert
dc.contributor.authorKabela, Adam
dc.contributor.authorKrál, Daniel
dc.contributor.authorLamaison, Ander
dc.contributor.authorVena, Lluís
dc.contributor.otherUAM. Departamento de Matemáticases_ES
dc.date.accessioned2022-02-22T12:35:42Z
dc.date.available2022-02-22T12:35:42Z
dc.date.issued2021-04-27
dc.identifier.citationEuropean Journal of Combinatorics 96 (2021): 103346en_US
dc.identifier.issn0195-6698 (print)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/700425
dc.description.abstractThe fractional and circular chromatic numbers are the two most studied non-integral refinements of the chromatic number of a graph. Starting from the definition of a coloring base of a graph, which originated in work related to ergodic theory, we formalize the notion of a gyrocoloring of a graph: the vertices are colored by translates of a single Borel set in the circle group, and neighboring vertices receive disjoint translates. The corresponding gyrochromatic number of a graph always lies between the fractional chromatic number and the circular chromatic number. We investigate basic properties of gyrocolorings. In particular, we construct examples of graphs whose gyrochromatic number is strictly between the fractional chromatic number and the circular chromatic number. We also establish several equivalent definitions of the gyrochromatic number, including a version involving all finite abelian groupsen_US
dc.description.sponsorshipThe first author was supported by the Spanish Ministerio de Economía y Competitividad project MTM2017-83496-P. The third, fourth and fifth authors were supported by the MUNI Award in Science and Humanities of the Grant Agency of Masaryk University. The sixth author was supported by the German Research Foundation under Germany’s Excellence Strategy - MATH+ (EXC-2046/1, project ID: 390685689). The seventh author was supported by project 18-13685Y of the Czech Science Foundation (GACR)en_US
dc.format.extent26 pag.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherElsevieren_US
dc.relation.ispartofEuropean Journal of Combinatoricsen_US
dc.rights© 2021 Elsevier Ltd.en_US
dc.subject.otherCircular chromatic numbersen_US
dc.subject.otherBorelen_US
dc.subject.otherGyrochromatic numberen_US
dc.subject.otherAbelian groupsen_US
dc.titleColoring graphs by translates in the circleen_US
dc.typearticlees_ES
dc.subject.ecienciaMatemáticases_ES
dc.date.embargoend2023-04-27
dc.relation.publisherversionhttps://doi.org/10.1016/j.ejc.2021.103346es_ES
dc.identifier.doi10.1016/j.ejc.2021.103346es_ES
dc.identifier.publicationfirstpage103346-1es_ES
dc.identifier.publicationlastpage103346-25es_ES
dc.identifier.publicationvolume96es_ES
dc.relation.projectIDGobierno de España. MTM2017-83496-Pes_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.rights.ccReconocimiento – NoComercial – SinObraDerivadaes_es
dc.rights.accessRightsopenAccesses_ES
dc.authorUAMCandela Pokorna, Pablo (274027)
dc.facultadUAMFacultad de Ciencias


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record