UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Universidad Autónoma de Madrid
Biblos-e Archivo
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workI want to submit my doctoral thesisFrequently Asked QuestionsCopyrightsFinancial Agencies and OA policy

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Growing solutions of the fractional p-Laplacian equation in the Fast Diffusion range

Author
Vázquez, Juan Luis
Entity
UAM. Departamento de Matemáticas
Publisher
Elsevier
Date
2022-01-01
Citation
10.1016/j.na.2021.112575
Nonlinear Analysis: Theory, Methods and Applications 214 (2021): 112575
 
 
 
ISSN
0362-546X (print)
DOI
10.1016/j.na.2021.112575
Funded by
Author partially funded by Project PGC2018-098440-B-I00 (Spain)
Project
Gobierno de España. PGC2018-098440-B-I00
Editor's Version
https://doi.org/10.1016/j.na.2021.112575
Subjects
Extinction; Fractional operators; Nonlinear parabolic equations; p-Laplacian operator; Self-similar solutions; Solutions with growing data; Matemáticas
URI
http://hdl.handle.net/10486/700583
Rights
© 2021 The Authors

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Abstract

We establish existence, uniqueness as well as quantitative estimates for solutions u(t,x) to the fractional nonlinear diffusion equation, ∂tu+Ls,p(u) = 0, where Ls,p= (−Δ)sp is the standard fractional p-Laplacian operator. We work in the range of exponents 0 < s < 1 and 1 < p < 2, and in some sections we need sp <1. The equation is posed in the whole space x ∈ RN. We first obtain weighted global integral estimates that allow establishing the existence of solutions for a class of large data that is proved to be roughly optimal. We use the estimates to study the class of self-similar solutions of forward type, that we describe in detail when they exist. We also explain what happens when possible self-similar solutions do not exist. We establish the dichotomy positivity versus extinction for nonnegative solutions at any given time. We analyse the conditions for extinction in finite time
Show full item record

Files in this item

Thumbnail
Name
growing_vazquez_NA_2021.pdf
Size
1.108Mb
Format
PDF

Refworks Export

Delicious Save this on Delicious

Google™ Scholar:Vázquez, Juan Luis

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [15094]

Related items

Showing items related by title, author, creator and subject.

  • Infinite-time concentration in aggregation–diffusion equations with a given potential 

    Carrillo, Jose A.; Gómez-Castro, David; Vázquez, Juan Luis
    2021-11-15
  • On a fractional thin film equation 

    Segatti, Antonio; Vázquez Suárez, Juan Luis
    2020-01-01
  • Fractional Schrödinger operators, Harnack's inequalities for fractional Laplacians 

    Zhang, Chao
    2012
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram