Show simple item record

dc.contributor.authorCantón, Alicia
dc.contributor.authorFernández, José L.
dc.contributor.authorFernández Gallardo, Pablo 
dc.contributor.authorMaciá, Víctor J.
dc.contributor.otherUAM. Departamento de Matemáticases_ES
dc.date.accessioned2022-03-07T11:35:53Z
dc.date.available2022-03-07T11:35:53Z
dc.date.issued2021-10-29
dc.identifier.citationComputational Methods and Function Theory 21.4 (2021): 851-904en_US
dc.identifier.issn1617-9447 (print)es_ES
dc.identifier.issn2195-3724 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/700620
dc.description.abstractWe give criteria, following Hayman and Báez-Duarte, for non-vanishing functions with non-negative coefficients to be Gaussian and strongly Gaussian. We use these criteria to show in a simple and unified manner asymptotics for a number of combinatorial objects, and, particularly, for a variety of partition questions like Ingham’s theorem on partitions with parts in an arithmetic sequence, or Wright’s theorem on plane partitions and, of course, Hardy–Ramanujan’s partition theoremen_US
dc.format.extent54 pag.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartofComputational Methods and Function Theoryen_US
dc.rights© The Author(s) 2021en_US
dc.subject.otherAnalytic combinatoricsen_US
dc.subject.otherAsymptotic formulaeen_US
dc.subject.otherHayman admissible functionsen_US
dc.subject.otherKhinchin familiesen_US
dc.subject.otherPartitionsen_US
dc.titleKhinchin Families and Hayman Classen_US
dc.typearticleen_US
dc.subject.ecienciaMatemáticases_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s40315-021-00420-6es_ES
dc.identifier.doi10.1007/s40315-021-00420-6es_ES
dc.identifier.publicationfirstpage851es_ES
dc.identifier.publicationissue4es_ES
dc.identifier.publicationlastpage905es_ES
dc.identifier.publicationvolume21es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsopenAccessen_US
dc.authorUAMFernández Pérez, José Luis (259758)
dc.authorUAMFernández Gallardo, Pablo (258317)
dc.facultadUAMFacultad de Cienciases_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record