Nonnegative control of finite-dimensional linear systems
Entity
UAM. Departamento de MatemáticasPublisher
ElsevierDate
2021-04-01Citation
10.1016/j.anihpc.2020.07.004
Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire 38.2 (2021): 301-346
ISSN
0294-1449 (print)DOI
10.1016/j.anihpc.2020.07.004Funded by
This Project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement NO.694126-DyCon), the Alexander von Humboldt-Professorship program, the Grants Finite4SoS ANR-15-CE23-0007-01 and ICON-ANR-16-ACHN-0014 of the French ANR, the Air Force Oÿce of Scientifc Research under Award NO:FA9550-18-1-0242, Grant MTM2017-92996-C2-1-R COSNET of MINECO (Spain) and by the ELKARTEK projectKK-2018/00083ROAD2DC of the Basque Government, the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement NO.765579-ConFlexProject
info:eu-repo/grantAgreement/EC/H2020/694126/EU//DYCON; Gobierno de España. MTM2017-92996-C2-1-R; info:eu-repo/grantAgreement/EC/H2020/765579/EU//ConFlexEditor's Version
https://doi.org/10.1016/j.anihpc.2020.07.004Subjects
Dirac impulse; Minimal time; Nonnegative control; MatemáticasRights
© 2020 L'Association Publications de l'Institut Henri Poincaré
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Abstract
We consider the controllability problem for finite-dimensional linear autonomous control systems with nonnegative controls. Despite the Kalman condition, the unilateral nonnegativity control constraint may cause a positive minimal controllability time. When this happens, we prove that, if the matrix of the system has a real eigenvalue, then there is a minimal time control in the space of Radon measures, which consists of a finite sum of Dirac impulses. When all eigenvalues are real, this control is unique and the number of impulses is less than half the dimension of the space. We also focus on the control system corresponding to a finite-difference spatial discretization of the one-dimensional heat equation with Dirichlet boundary controls, and we provide numerical simulations
Files in this item
Google Scholar:Lohéac, Jérôme
-
Trélat, Emmanuel
-
Zuazua Iriondo, Enrique
This item appears in the following Collection(s)
Related items
Showing items related by title, author, creator and subject.