Show simple item record

dc.contributor.authorLohéac, Jérôme
dc.contributor.authorTrélat, Emmanuel
dc.contributor.authorZuazua Iriondo, Enrique 
dc.contributor.otherUAM. Departamento de Matemáticases_ES
dc.date.accessioned2022-03-07T11:55:01Z
dc.date.available2022-03-07T11:55:01Z
dc.date.issued2021-04-01
dc.identifier.citationAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire 38.2 (2021): 301-346en_US
dc.identifier.issn0294-1449 (print)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/700630
dc.description.abstractWe consider the controllability problem for finite-dimensional linear autonomous control systems with nonnegative controls. Despite the Kalman condition, the unilateral nonnegativity control constraint may cause a positive minimal controllability time. When this happens, we prove that, if the matrix of the system has a real eigenvalue, then there is a minimal time control in the space of Radon measures, which consists of a finite sum of Dirac impulses. When all eigenvalues are real, this control is unique and the number of impulses is less than half the dimension of the space. We also focus on the control system corresponding to a finite-difference spatial discretization of the one-dimensional heat equation with Dirichlet boundary controls, and we provide numerical simulationsen_US
dc.description.sponsorshipThis Project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement NO.694126-DyCon), the Alexander von Humboldt-Professorship program, the Grants Finite4SoS ANR-15-CE23-0007-01 and ICON-ANR-16-ACHN-0014 of the French ANR, the Air Force Oÿce of Scientifc Research under Award NO:FA9550-18-1-0242, Grant MTM2017-92996-C2-1-R COSNET of MINECO (Spain) and by the ELKARTEK projectKK-2018/00083ROAD2DC of the Basque Government, the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement NO.765579-ConFlexen_US
dc.format.extent53 pag.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaireen_US
dc.rights© 2020 L'Association Publications de l'Institut Henri Poincaréfr
dc.subject.otherDirac impulseen_US
dc.subject.otherMinimal timeen_US
dc.subject.otherNonnegative controlen_US
dc.titleNonnegative control of finite-dimensional linear systemsen_US
dc.typearticleen_US
dc.subject.ecienciaMatemáticases_ES
dc.date.embargoend2023-04-01
dc.relation.publisherversionhttps://doi.org/10.1016/j.anihpc.2020.07.004es_ES
dc.identifier.doi10.1016/j.anihpc.2020.07.004es_ES
dc.identifier.publicationfirstpage301es_ES
dc.identifier.publicationissue2es_ES
dc.identifier.publicationlastpage346es_ES
dc.identifier.publicationvolume38es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/694126/EU//DYCONes_ES
dc.relation.projectIDGobierno de España. MTM2017-92996-C2-1-Res_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/765579/EU//ConFlexes_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.rights.ccReconocimiento – NoComercial – SinObraDerivadaes_ES
dc.rights.accessRightsopenAccessen_US
dc.authorUAMZuazua Iriondo, Enrique (260385)
dc.facultadUAMFacultad de Cienciases_ES
dc.facultadUAMFacultad de Ciencias


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record