UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

An analysis of sound event detection under acoustic degradation using multi-resolution systems

Author
de Benito-Gorrón, Diego; Ramos Castro, Danieluntranslated; Toledano, Doroteo T.
Entity
UAM. Departamento de Tecnología Electrónica y de las Comunicaciones
Publisher
MDPI
Date
2021-12-06
Citation
10.3390/app112311561
Applied Sciences-Basel 11.23 (2021): 11561
 
 
 
ISSN
2076-3417 (online)
DOI
10.3390/app112311561
Funded by
This research and the APC were supported by project DSForSec (grant number RTI2018- 098091-B-I00) funded by the Ministry of Science, Innovation and Universities of Spain and the European Regional Development Fund (ERDF)
Project
Gobierno de España. RTI2018- 098091-B-I00
Editor's Version
https://doi.org/10.3390/app112311561
Subjects
Acoustic degradation; DCASE challenge 2020; Multiresolution; Sound event detection; Telecomunicaciones
URI
http://hdl.handle.net/10486/701135
Rights
© The author(s)

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

The Sound Event Detection task aims to determine the temporal locations of acoustic events in audio clips. In recent years, the relevance of this field is rising due to the introduction of datasets such as Google AudioSet or DESED (Domestic Environment Sound Event Detection) and competitive evaluations like the DCASE Challenge (Detection and Classification of Acoustic Scenes and Events). In this paper, we analyze the performance of Sound Event Detection systems under diverse artificial acoustic conditions such as high-or low-pass filtering and clipping or dynamic range compression, as well as under an scenario of high overlap between events. For this purpose, the audio was obtained from the Evaluation subset of the DESED dataset, whereas the systems were trained in the context of the DCASE Challenge 2020 Task 4. Our systems are based upon the challenge baseline, which consists of a Convolutional-Recurrent Neural Network trained using the Mean Teacher method, and they employ a multiresolution approach which is able to improve the Sound Event Detection performance through the use of several resolutions during the extraction of Mel-spectrogram features. We provide insights on the benefits of this multiresolution approach in different acoustic settings, and compare the performance of the single-resolution systems in the aforementioned scenarios when using different resolutions. Furthermore, we complement the analysis of the performance in the high-overlap scenario by assessing the degree of overlap of each event category in sound event detection datasets
Show full item record

Files in this item

Thumbnail
Name
9036367.pdf
Size
558.1Kb
Format
PDF

Refworks Export

Google™ Scholar:de Benito-Gorrón, Diego - Ramos Castro, Daniel - Toledano, Doroteo T.

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17779]

Related items

Showing items related by title, author, creator and subject.

  • A Multi-Resolution CRNN-Based Approach for Semi-Supervised Sound Event Detection in DCASE 2020 Challenge 

    De Benito-Gorron, Diego; Ramos Castro, DanielAutoridad UAM; Toledano, Doroteo T.
    2021-06-14
  • Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset 

    Benito Gorrón, Diego deAutoridad UAM; Lozano Díez, AliciaAutoridad UAM; Toledano, Doroteo T.; González Rodríguez, JoaquínAutoridad UAM
    2019-06-17
  • Multi-resolution speech analysis for automatic speech recognition using deep neural networks: Experiments on TIMIT 

    Toledano, Doroteo T.; Fernández-Gallego, María Pilar; Lozano Díez, AliciaAutoridad UAM
    2018-10-01
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad