Show simple item record

dc.contributor.authorBógalo, Juan
dc.contributor.authorPoncela Blanco, Pilar 
dc.contributor.authorSenra, Eva
dc.contributor.otherUAM. Departamento de Análisis Económico: Economía Cuantitativaes_ES
dc.date.accessioned2022-04-01T08:10:05Z
dc.date.available2022-04-01T08:10:05Z
dc.date.issued2021-02-01
dc.identifier.citationSignal Processing 179 (2021): 107824es_ES
dc.identifier.issn0165-1684 (print)es_ES
dc.identifier.issn1872-7557 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/701160
dc.description.abstractSometimes, it is of interest to single out the fluctuations associated to a given frequency. We propose a new variant of SSA, Circulant SSA (CiSSA), that allows to extract the signal associated to any frequency specified beforehand. This is a novelty when compared with other SSA procedures that need to identify ex-post the frequencies associated to the extracted signals. We prove that CiSSA is asymptotically equivalent to these alternative procedures although with the advantage of avoiding the need of the subsequent frequency identification. We check its good performance and compare it to alternative SSA methods through several simulations for linear and nonlinear time series. We also prove its validity in the nonstationary case. We apply CiSSA in two different fields to show how it works with real data and find that it behaves successfully in both applications. Finally, we compare the performance of CiSSA with other state of the art techniques used for nonlinear and nonstationary signals with amplitude and frequency varying in timees_ES
dc.description.sponsorshipFinancial support from the Spanish government, contract grants MINECO/FEDER ECO2015-70331-C2-1-R, ECO2015-66593-P, ECO2016-76818-C3-3-P, PID2019-107161GB-C32 and PID2019-108079GB-C22 is acknowledgedes_ES
dc.format.extent17 pag.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofSignal Processinges_ES
dc.rights© 2020 The Authorses_ES
dc.subject.otherAM-FM Signalses_ES
dc.subject.otherCirculant matriceses_ES
dc.subject.otherPrincipal componentses_ES
dc.subject.otherSignal extractiones_ES
dc.subject.otherSingular spectrum analysises_ES
dc.subject.otherSingular value decompositiones_ES
dc.titleCirculant singular spectrum analysis: A new automated procedure for signal extractiones_ES
dc.typearticlees_ES
dc.subject.ecienciaEconomíaes_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.sigpro.2020.107824es_ES
dc.identifier.doi10.1016/j.sigpro.2020.107824es_ES
dc.identifier.publicationfirstpage107824-1es_ES
dc.identifier.publicationlastpage107824-17es_ES
dc.identifier.publicationvolume179es_ES
dc.relation.projectIDGobierno de España. ECO2015-70331-C2-1-Res_ES
dc.relation.projectIDGobierno de España. PID2019-108079GB-C22es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.ccReconocimiento – NoComercial – SinObraDerivada
dc.rights.accessRightsopenAccesses_ES
dc.authorUAMBogalo Román, Juan Vicente (314093)
dc.authorUAMPoncela Blanco, María Del Pilar (258669)
dc.facultadUAMFacultad de Ciencias Económicas y Empresarialeses_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record