UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Analyzing artificial intelligence systems for the prediction of atrial fibrillation from sinus-rhythm ECGs including demographics and feature visualization

Author
Melzi, Pietro; Tolosana Moranchel, Rubénuntranslated; Cecconi, Alberto; Sanz-Garcia, Ancor; Ortega, Guillermo J.; Jimenez-Borreguero, Luis Jesus; Vera Rodríguez, Rubénuntranslated
Entity
UAM. Departamento de Tecnología Electrónica y de las Comunicaciones
Publisher
Nature Portfolio
Date
2021-11-23
Citation
10.1038/s41598-021-02179-1
Scientific Reports 11.1 (2021): 22786
 
 
 
ISSN
2045-2322 (online)
DOI
10.1038/s41598-021-02179-1
Funded by
GJO, AS-G, LJJ-B received a research grant from the Carlos III Institute of Health under the health Strategy action 2020-2022 with reference PI20/00792. Tis study is also supported partially by projects TRESPASS-ETN (H2020-MSCAITN-2019-860813), PRIMA (H2020-MSCA-ITN-2019-860315), IDEA-FAST (IMI2-2018-15-853981), BIBECA (RTI2018-101248-B-I00 MINECO/FEDER)
Project
info:eu-repo/H2020-MSCAITN-2019-860813; info:eu-repo/H2020-MSCA-ITN-2019-860315; info:eu-repo/IMI2-2018-15-853981; Gobierno de España. RTI2018-101248-B-I00
Editor's Version
https://doi.org/10.1038/s41598-021-02179-1
Subjects
Telecomunicaciones
URI
http://hdl.handle.net/10486/701215
Rights
© The author(s)

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

Atrial fibrillation (AF) is an abnormal heart rhythm, asymptomatic in many cases, that causes several health problems and mortality in population. This retrospective study evaluates the ability of different AI-based models to predict future episodes of AF from electrocardiograms (ECGs) recorded during normal sinus rhythm. Patients are divided into two classes according to AF occurrence or sinus rhythm permanence along their several ECGs registry. In the constrained scenario of balancing the age distributions between classes, our best AI model predicts future episodes of AF with area under the curve (AUC) 0.79 (0.72–0.86). Multiple scenarios and age-sex-specific groups of patients are considered, achieving best performance of prediction for males older than 70 years. These results point out the importance of considering different demographic groups in the analysis of AF prediction, showing considerable performance gaps among them. In addition to the demographic analysis, we apply feature visualization techniques to identify the most important portions of the ECG signals in the task of AF prediction, improving this way the interpretability and understanding of the AI models. These results and the simplicity of recording ECGs during check-ups add feasibility to clinical applications of AI-based models
Show full item record

Files in this item

Thumbnail
Name
9036147.pdf
Size
2.098Mb
Format
PDF
Thumbnail
Name
correction_analyzing_melzi_scientific_2021.pdf
Size
662.3Kb
Format
PDF

Refworks Export

Google™ Scholar:Melzi, Pietro - Tolosana Moranchel, Rubén - Cecconi, Alberto - Sanz-Garcia, Ancor - Ortega, Guillermo J. - Jimenez-Borreguero, Luis Jesus - Vera Rodríguez, Rubén

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17218]

Related items

Showing items related by title, author, creator and subject.

  • Optimal feature selection and inter-operability compensation for on-line biometric signature authentication 

    Tolosana Moranchel, RubénAutoridad UAM; Vera Rodríguez, RubénAutoridad UAM; Ortega García, JavierAutoridad UAM; Fiérrez Aguilar, JuliánAutoridad UAM
    2015-06-29
  • Preprocessing and feature selection for improved sensor interoperability in online biometric signature verification 

    Tolosana Moranchel, RubénAutoridad UAM; Vera Rodríguez, RubénAutoridad UAM; Ortega García, JavierAutoridad UAM; Fiérrez Aguilar, JuliánAutoridad UAM
    2015-05-08
  • Increasing the Robustness of Biometric Templates for Dynamic Signature Biometric Systems 

    Tolosana Moranchel, RubénAutoridad UAM; Vera Rodríguez, RubénAutoridad UAM; Ortega García, JavierAutoridad UAM; Fiérrez Aguilar, JuliánAutoridad UAM
    2015
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad