UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Multi-class Gaussian Process Classification with Noisy Inputs

Author
Villacampa-Calvo, Carlosuntranslated; Zaldívar, Bryan; Garrido Merchán, Eduardo Césaruntranslated; Hernández Lobato, Danieluntranslated
Entity
UAM. Departamento de Ingeniería Informática
Publisher
Microtome Publishing
Date
2021-01
Citation
Journal Of Machine Learning Research 22.36 (2021): 1−52
 
 
 
ISSN
1532-4435 (print); 1533-7928 (online)
Funded by
We would like to thank M. A. Sanchez-Conde, J. Coronado and V. Gammaldi for pointing our attention to the data set that motivated this work, as well as for the discussions concerning the data extraction. We thank as well E. Fernandez-Martınez, A. Suarez and C. M. Alaız-Gudin for useful discussions and feedback about the work. BZ especially acknowledges the hospitality of the Machine Learning group of UAM during the development of this project. BZ is supported by the Programa Atraccion de Talento de la Comunidad de Madrid under grant n. 2017-T2/TIC-5455, from the Spanish MINECO’s “Centro de Excelencia Severo Ochoa” Programme via grant SEV-2016-0597, and from the Comunidad de Madrid project SI1-PJI-2019-00294, of which BZ is the P.I. The authors gratefully acknowledge the use of the facilities of Centro de Computacion Cientıfica (CCC) at Universidad Autonoma de Madrid. The authors also acknowledge financial support from Spanish Plan Nacional I+D+i, grants TIN2016-76406-P. Finally, the authors acknowledge financial support from PID2019-106827GB-I00/AEI/10.13039/501100011033
Project
; Gobierno de España. SEV-2016-0597; ; Gobierno de España. TIN2016-76406-P; Gobierno de España. PID2019-106827GB-I00
Subjects
Informática
URI
http://hdl.handle.net/10486/701838
Rights
© The author(s)

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

It is a common practice in the machine learning community to assume that the observed data are noise-free in the input attributes. Nevertheless, scenarios with input noise are common in real problems, as measurements are never perfectly accurate. If this input noise is not taken into account, a supervised machine learning method is expected to perform sub-optimally. In this paper, we focus on multi-class classification problems and use Gaussian processes (GPs) as the underlying classifier. Motivated by a data set coming from the astrophysics domain, we hypothesize that the observed data may contain noise in the inputs. Therefore, we devise several multi-class GP classifiers that can account for input noise. Such classifiers can be efficiently trained using variational inference to approximate the posterior distribution of the latent variables of the model. Moreover, in some situations, the amount of noise can be known before-hand. If this is the case, it can be readily introduced in the proposed methods. This prior information is expected to lead to better performance results. We have evaluated the proposed methods by carrying out several experiments, involving synthetic and real data. These include several data sets from the UCI repository, the MNIST data set and a data set coming from astrophysics. The results obtained show that, although the classification error is similar across methods, the predictive distribution of the proposed methods is better, in terms of the test log-likelihood, than the predictive distribution of a classifier based on GPs that ignores input noise
Show full item record

Files in this item

Thumbnail
Name
multiclass_villacampa_JMLR_2021.pdf
Size
5.618Mb
Format
PDF

Refworks Export

Google™ Scholar:Villacampa-Calvo, Carlos - Zaldívar, Bryan - Garrido Merchán, Eduardo César - Hernández Lobato, Daniel

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16522]

Related items

Showing items related by title, author, creator and subject.

  • Alpha-divergence minimization for deep Gaussian processes 

    Villacampa Calvo, CarlosAutoridad UAM; Hernández Muñoz, GonzaloAutoridad UAM; Hernández Lobato, DanielAutoridad UAM
    2022-08-22
  • Gaussian process conditional copulas with applications to financial time series 

    Hernández-Lobato, José Miguel; Lloyd, James R.; Hernández Lobato, DanielAutoridad UAM
    2013
  • Advanced machine learning methods based on Gaussian processes 

    Villacampa Calvo, CarlosAutoridad UAM
    2022-07-05
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram