UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Supervised outlier detection for classification and regression

Author
Fernández Pascual, Ángelauntranslated; Bella, Juan; Dorronsoro Ibero, José Ramónuntranslated
Entity
UAM. Departamento de Ingeniería Informática
Publisher
Elsevier
Date
2022-05-14
Citation
10.1016/j.neucom.2022.02.047
Neurocomputing 486 (2022): 77-92
 
 
 
ISSN
0925-2312 (print)
DOI
10.1016/j.neucom.2022.02.047
Funded by
The authors acknowledge financial support from the European Regional Development Fund and the Spanish State Research Agency of the Ministry of Economy, Industry, and Competitiveness under the projects TIN2016-76406-P (AEI/FEDER, UE) and PID2019-106827GB-I00. They also thank the UAM–ADIC Chair for Data Science and Machine Learning and gratefully acknowledge the use of the facilities of Centro de Computación Científica (CCC) at UAM
Project
Gobierno de España. TIN2016-76406-P; Gobierno de España. PID2019-106827GB-I00
Editor's Version
https://doi.org/10.1016/j.neucom.2022.02.047
Subjects
Classification; Histogram based outlier detection; Isolation forests; Local outlier factor; Minimum covariance determinant; Optimal hyperparameter selection; Outlier detection; Regression; Supervised learning; Informática
URI
http://hdl.handle.net/10486/702392
Rights
© The author(s)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Abstract

Outlier detection, i.e., the task of detecting points that are markedly different from the data sample, is an important challenge in machine learning. When a model is built, these special points can skew the model training and result in less accurate predictions. Due to this fact, it is important to identify and remove them before building any supervised model and this is often the first step when dealing with a machine learning problem. Nowadays, there exists a very large number of outlier detector algorithms that provide good results, but their main drawbacks are their unsupervised nature together with the hyperparameters that must be properly set for obtaining good performance. In this work, a new supervised outlier estimator is proposed. This is done by pipelining an outlier detector with a following a supervised model, in such a way that the targets of the later supervise how all the hyperparameters involved in the outlier detector are optimally selected. This pipeline-based approach makes it very easy to combine different outlier detectors with different classifiers and regressors. In the experiments done, nine relevant outlier detectors have been combined with three regressors over eight regression problems as well as with two classifiers over another eight binary and multi-class classification problems. The usefulness of the proposal as an objective and automatic way to optimally determine detector hyperparameters has been proven and the effectiveness of the nine outlier detectors has also been analyzed and compared
Show full item record

Files in this item

Thumbnail
Name
supervises_fernandez_Neurocomputing_2022.pdf
Size
520.9Kb
Format
PDF

Refworks Export

Google™ Scholar:Fernández Pascual, Ángela - Bella, Juan - Dorronsoro Ibero, José Ramón

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17732]

Related items

Showing items related by title, author, creator and subject.

  • Supervised Hyperparameter Estimation for Anomaly Detection 

    Bella, Juan; Fernández, Ángela; Dorronsoro, José R.
    2020-11-04
  • Diffusion methods for wind power ramp detection 

    Fernández Pascual, ÁngelaAutoridad UAM; Alaiz Gudín, Carlos MaríaAutoridad UAM; González, Ana M.; Díaz García, JuliaAutoridad UAM; Dorronsoro Ibero, José RamónAutoridad UAM
    2013
  • Deep Support Vector Classification and Regression 

    Díaz-Vico, David; Prada, Jesús; Omari, Adil; Dorronsoro Ibero, José RamónAutoridad UAM
    2019-05-01
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad