Show simple item record

dc.contributor.authorFernández Pascual, Ángela es_ES
dc.contributor.authorBella, Juanes_ES
dc.contributor.authorDorronsoro Ibero, José Ramón es_ES
dc.contributor.otherUAM. Departamento de Ingeniería Informáticaes_ES
dc.date.accessioned2022-06-06T16:04:47Zen_US
dc.date.available2022-06-06T16:04:47Zen_US
dc.date.issued2022-05-14en_US
dc.identifier.citationNeurocomputing 486 (2022): 77-92en_US
dc.identifier.issn0925-2312 (print)en_US
dc.identifier.urihttp://hdl.handle.net/10486/702392en_US
dc.description.abstractOutlier detection, i.e., the task of detecting points that are markedly different from the data sample, is an important challenge in machine learning. When a model is built, these special points can skew the model training and result in less accurate predictions. Due to this fact, it is important to identify and remove them before building any supervised model and this is often the first step when dealing with a machine learning problem. Nowadays, there exists a very large number of outlier detector algorithms that provide good results, but their main drawbacks are their unsupervised nature together with the hyperparameters that must be properly set for obtaining good performance. In this work, a new supervised outlier estimator is proposed. This is done by pipelining an outlier detector with a following a supervised model, in such a way that the targets of the later supervise how all the hyperparameters involved in the outlier detector are optimally selected. This pipeline-based approach makes it very easy to combine different outlier detectors with different classifiers and regressors. In the experiments done, nine relevant outlier detectors have been combined with three regressors over eight regression problems as well as with two classifiers over another eight binary and multi-class classification problems. The usefulness of the proposal as an objective and automatic way to optimally determine detector hyperparameters has been proven and the effectiveness of the nine outlier detectors has also been analyzed and compareden_US
dc.description.sponsorshipThe authors acknowledge financial support from the European Regional Development Fund and the Spanish State Research Agency of the Ministry of Economy, Industry, and Competitiveness under the projects TIN2016-76406-P (AEI/FEDER, UE) and PID2019-106827GB-I00. They also thank the UAM–ADIC Chair for Data Science and Machine Learning and gratefully acknowledge the use of the facilities of Centro de Computación Científica (CCC) at UAMen_US
dc.format.extent16 pag.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofNeurocomputingen_US
dc.rights© The author(s)en_US
dc.subject.otherClassificationen_US
dc.subject.otherHistogram based outlier detectionen_US
dc.subject.otherIsolation forestsen_US
dc.subject.otherLocal outlier factoren_US
dc.subject.otherMinimum covariance determinanten_US
dc.subject.otherOptimal hyperparameter selectionen_US
dc.subject.otherOutlier detectionen_US
dc.subject.otherRegressionen_US
dc.subject.otherSupervised learningen_US
dc.titleSupervised outlier detection for classification and regressionen_US
dc.typearticleen_US
dc.subject.ecienciaInformáticaes_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.neucom.2022.02.047es_ES
dc.identifier.doi10.1016/j.neucom.2022.02.047es_ES
dc.identifier.publicationfirstpage77es_ES
dc.identifier.publicationlastpage92es_ES
dc.identifier.publicationvolume486es_ES
dc.relation.projectIDGobierno de España. TIN2016-76406-Pes_ES
dc.relation.projectIDGobierno de España. PID2019-106827GB-I00es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US
dc.contributor.groupAprendizaje Automático (ING EPS-001)es_ES
dc.rights.ccReconocimiento – NoComercial – SinObraDerivadaes_ES
dc.rights.accessRightsopenAccessen_US
dc.facultadUAMEscuela Politécnica Superiores_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record