UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Universidad Autónoma de Madrid
Biblos-e Archivo
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workI want to submit my doctoral thesisFrequently Asked QuestionsCopyrightsFinancial Agencies and OA policy

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Machine Learning Nowcasting of PV Energy Using Satellite Data

Author
Catalina Feliu, Alejandrountranslated; Torres-Barrán, Alberto; Alaiz Gudín, Carlos Maríauntranslated; Dorronsoro Ibero, José Ramónuntranslated
Entity
UAM. Departamento de Ingeniería Informática
Publisher
Springer Nature
Date
2020-08-01
Citation
10.1007/s11063-018-09969-1
Neural Processing Letters 52.1 (2020): 97-115
 
 
 
ISSN
1370-4621 (print); 1573-773X (online)
DOI
10.1007/s11063-018-09969-1
Funded by
With partial support from Spain’s Grants TIN2013-42351-P, TIN2016-76406-P, TIN2015-70308-REDT and S2013/ICE-2845 CASI-CAM-CM. Work supported also by project FACIL–Ayudas Fundación BBVA a Equipos de Investigación Científica 2016, and the UAM–ADIC Chair for Data Science and Machine Learning. The second author was also supported by the FPU–MEC Grant AP-2012-5163. We thank Red Eléctrica de España for useful discussions and making available PV energy data and gratefully acknowledge the use of the facilities of Centro de Computación Científica (CCC) at UAM
Project
Gobierno de España. TIN2013-42351-P; Gobierno de España. TIN2016-76406-P; Gobierno de España. TIN2015-70308-REDT; Comunidad de Madrid. S2013/ICE-2845
Editor's Version
http://doi.org/10.1007/s11063-018-09969-1
Subjects
Clear sky models; EUMETSAT; Lasso; Nowcasting; Photovoltaic energy; Support vector regression; Informática
URI
http://hdl.handle.net/10486/702746
Note
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://doi.org/10.1007/s11063-018-09969-1
Rights
© Springer Nature

Abstract

Satellite-measured radiances are obviously of great interest for photovoltaic (PV) energy prediction. In this work we will use them together with clear sky irradiance estimates for the nowcasting of PV energy productions over peninsular Spain. We will feed them directly into two linear Machine Learning models, Lasso and linear Support Vector Regression (SVR), and two highly non-linear ones, Deep Neural Networks (in particular, Multilayer Perceptrons, MLPs) and Gaussian SVRs. We shall also use a simple clear sky-based persistence model for benchmarking purposes. We consider prediction horizons of up to 6 h, with Gaussian SVR being statistically better than the other models at each horizon, since its errors increase slowly with time (with an average of 1.92% for the first three horizons and of 2.89% for the last three). MLPs performance is close to that of the Gaussian SVR for the longer horizons (with an average of 3.1%) but less so at the initial ones (average of 2.26%), being nevertheless significantly better than the linear models. As it could be expected, linear models give weaker results (in the initial horizons, Lasso and linear SVR have already an error of 3.21% and 3.46%, respectively), but we will take advantage of the spatial sparsity provided by Lasso to try to identify the concrete areas with a larger influence on PV energy nowcasts
Show full item record

Files in this item

Thumbnail
Name
MMachine_Catalina_Neural_2020_PS.pdf
Size
1.286Mb
Format
PDF

Refworks Export

Delicious Save this on Delicious

Google™ Scholar:Catalina Feliu, Alejandro - Torres-Barrán, Alberto - Alaiz Gudín, Carlos María - Dorronsoro Ibero, José Ramón

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [15094]

Related items

Showing items related by title, author, creator and subject.

  • Combining Numerical Weather Predictions and Satellite Data for PV Energy Nowcasting 

    Catalina Feliu, AlejandroAutoridad UAM; Alaiz Gudín, Carlos MaríaAutoridad UAM; Dorronsoro Ibero, José RamónAutoridad UAM
    2020-07-01
  • ν-SVM solutions of constrained lasso and elastic net 

    Torres-Barrán, Alberto; Alaiz Gudín, Carlos MaríaAutoridad UAM; Dorronsoro Ibero, José RamónAutoridad UAM
    2018-01-31
  • Multitask support vector regression for solar and wind energy prediction 

    Ruiz Pastor, CarlosAutoridad UAM; Alaiz Gudín, Carlos MaríaAutoridad UAM; Dorronsoro Ibero, José RamónAutoridad UAM
    2020-11-30
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram