Show simple item record

dc.contributor.authorFregoni, Jacopo 
dc.contributor.authorGarcia-Vidal, Francisco J.
dc.contributor.authorFeist, Johannes
dc.contributor.otherUAM. Departamento de Física Teórica de la Materia Condensadaes_ES
dc.date.accessioned2022-06-23T10:45:21Z
dc.date.available2022-06-23T10:45:21Z
dc.date.issued2022-02-15
dc.identifier.citationACS Photonics 9.4 (2022): 1096-1107es_ES
dc.identifier.issn2330-4022 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/702763
dc.description.abstractPolaritonic chemistry exploits strong light−matter coupling between molecules and confined electromagnetic field modes to enable new chemical reactivities. In systems displaying this functionality, the choice of the cavity determines both the confinement of the electromagnetic field and the number of molecules that are involved in the process. While in wavelengthscale optical cavities the light−matter interaction is ruled by collective effects, plasmonic subwavelength nanocavities allow even single molecules to reach strong coupling. Due to these very distinct situations, a multiscale theoretical toolbox is then required to explore the rich phenomenology of polaritonic chemistry. Within this framework, each component of the system (molecules and electromagnetic modes) needs to be treated in sufficient detail to obtain reliable results. Starting from the very general aspects of light−molecule interactions in typical experimental setups, we underline the basic concepts that should be taken into account when operating in this new area of research. Building on these considerations, we then provide a map of the theoretical tools already available to tackle chemical applications of molecular polaritons at different scales. Throughout the discussion, we draw attention to both the successes and the challenges still ahead in the theoretical description of polaritonic chemistryen_US
dc.description.sponsorshipThis work has been funded by the European Research Council through Grant ERC-2016-StG-714870 and by the Spanish Ministry for Science, Innovation, and Universities − Agencia Estatal de Investigaciòn through Grants RTI2018-099737-BI00, PCI2018-093145 (through the QuantERA program of the European Commission), and CEX2018-000805-M (through the Marìa de Maeztu Program for Units of Excellence in R&D). We also acknowledge financial support from the Proyecto Sinèrgico CAM 2020 Y2020/TCS-6545 (Nano- QuCo-CM)en_US
dc.format.extent12 pag.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofACS Photonicsen_US
dc.rights© 2022 The Authorses_ES
dc.subject.otherMolecular polaritonsen_US
dc.subject.otherStrong couplingen_US
dc.subject.otherPhotochemistryen_US
dc.subject.otherNanoplasmonicsen_US
dc.subject.otherResonant cavitiesen_US
dc.subject.otherCavity-QEDen_US
dc.titleTheoretical Challenges in Polaritonic Chemistryen_US
dc.typearticleen_US
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttps://doi.org/10.1021/acsphotonics.1c01749es_ES
dc.identifier.publicationfirstpage1096es_ES
dc.identifier.publicationissue4es_ES
dc.identifier.publicationlastpage1107es_ES
dc.identifier.publicationvolume9es_ES
dc.relation.projectIDGobierno de España. RTI2018-099737-BI00es_ES
dc.relation.projectIDGobierno de España. PCI2018-093145es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US
dc.rights.ccReconocimiento
dc.rights.accessRightsopenAccessen_US
dc.facultadUAMFacultad de Cienciases_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record