UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Deep least squares fisher discriminant analysis

Author
Diaz-Vico, David; Dorronsoro Ibero, José Ramón
Entity
UAM. Departamento de Ingeniería Informática
Publisher
Institute of Electrical and Electronics Engineers Inc. (IEEE)
Date
2020-08-01
Citation
10.1109/TNNLS.2019.2906302
IEEE Transactions on Neural Networks and Learning Systems 31.8 (2020): 2752-2763
 
 
 
ISSN
2162-237X (online); 2162-2388 (print)
DOI
10.1109/TNNLS.2019.2906302
Editor's Version
http://doi.org/10.1109/TNNLS.2019.2906302
Subjects
Deep neural networks (DNNs); Fisher discriminant analysis (FDA); kernel discriminant analysis; nonlinear classifiers; Informática
URI
http://hdl.handle.net/10486/702766
Note
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
Rights
© IEEE

Abstract

While being one of the first and most elegant tools for dimensionality reduction, Fisher linear discriminant analysis (FLDA) is not currently considered among the top methods for feature extraction or classification. In this paper, we will review two recent approaches to FLDA, namely, least squares Fisher discriminant analysis (LSFDA) and regularized kernel FDA (RKFDA) and propose deep FDA (DFDA), a straightforward nonlinear extension of LSFDA that takes advantage of the recent advances on deep neural networks. We will compare the performance of RKFDA and DFDA on a large number of two-class and multiclass problems, many of them involving class-imbalanced data sets and some having quite large sample sizes; we will use, for this, the areas under the receiver operating characteristics (ROCs) curve of the classifiers considered. As we shall see, the classification performance of both methods is often very similar and particularly good on imbalanced problems, but building DFDA models is considerably much faster than doing so for RKFDA, particularly in problems with quite large sample sizes
Show full item record

Files in this item

Thumbnail
Name
deep_diaz-vico_TLNLS_2020_PS.pdf
Size
1.922Mb
Format
PDF

Refworks Export

Google™ Scholar:Diaz-Vico, David - Dorronsoro Ibero, José Ramón

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16829]

Related items

Showing items related by title, author, creator and subject.

  • Deep fisher discriminant analysis 

    Díaz-Vico, David; Omari, Adil; Torres Barrán, Alberto; Dorronsoro Ibero, José RamónAutoridad UAM
    2017
  • On the equivalence of Kernel Fisher discriminant analysis and Kernel Quadratic Programming Feature Selection 

    Rodríguez-Luján, Irene; Santa Cruz Fernández, CarlosAutoridad UAM; Huerta, Ramón
    2011-08-01
  • Deep Neural Networks for Wind and Solar Energy Prediction 

    Díaz–Vico, David; Torres–Barrán, Alberto; Omari, Adil; Dorronsoro Ibero, José RamónAutoridad UAM
    2017-12-01
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad