UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Universidad Autónoma de Madrid
Biblos-e Archivo
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workI want to submit my doctoral thesisFrequently Asked QuestionsCopyrightsFinancial Agencies and OA policy

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

DeepFakes detection across generations: Analysis of facial regions, fusion, and performance evaluation

Author
Tolosana Moranchel, Rubénuntranslated; Romero-Tapiador, Sergio; Vera Rodríguez, Rubénuntranslated; Gonzalez Sosa; Fiérrez Aguilar, Juliánuntranslated
Entity
UAM. Departamento de Tecnología Electrónica y de las Comunicaciones
Publisher
Elsevier
Date
2022-04-01
Citation
10.1016/j.engappai.2022.104673
Engineering Applications of Artificial Intelligence 110 (2022): 104673
 
 
 
ISSN
0952-1976 (print)
DOI
10.1016/j.engappai.2022.104673
Funded by
This work has been supported by projects: PRIMA (H2020-MSCAITN-2019-860315), TRESPASS-ETN (H2020-MSCA-ITN-2019-860813), BIBECA, Spain (MINECO/FEDER RTI2018-101248-B-I00)
Project
info:eu-repo/H2020-MSCAITN-2019-860315; info:eu-repo/H2020-MSCA-ITN-2019-860813; Gobierno de España. RTI2018-101248-B-I00
Editor's Version
https://doi.org/10.1016/j.engappai.2022.104673
Subjects
Benchmark; Databases; DeepFakes; Face manipulation; Fake detection; Fake news; Media forensics; Telecomunicaciones
URI
http://hdl.handle.net/10486/702775
Rights
© The author(s)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Abstract

Media forensics has attracted a tremendous attention in the last years in part due to the increasing concerns around DeepFakes. Since the release of the initial DeepFakes databases of the 1st generation such as UADFV and FaceForensics++ up to the latest databases of the 2nd generation such as Celeb-DF and DFDC, many visual improvements have been carried out, making fake videos almost indistinguishable to the human eye. This study provides an in-depth analysis of both 1st and 2nd DeepFakes generations in terms of fake detection performance. Two different methods are considered in our experimental framework: (i) the traditional one followed in the literature based on selecting the entire face as input to the fake detection system, and (ii) a novel approach based on the selection of specific facial regions as input to the fake detection system. Fusion techniques are applied both to the facial regions and also to three different state-of-the-art fake detection systems (Xception, Capsule Network, and DSP-FWA) in order to further increase the robustness of the detectors considered. Finally, experiments regarding intra- and inter-database scenarios are performed. Among all the findings resulting from our experiments, we highlight: (i) the very good results achieved using facial regions and fusion techniques with fake detection results above 99% Area Under the Curve (AUC) for UADFV, FaceForensics++, and Celeb-DF v2 databases, and (ii) the necessity to put more efforts on the analysis of inter-database scenarios to improve the ability of the fake detectors against attacks unseen during learning
Show full item record

Files in this item

Thumbnail
Name
deepfakes_tolosana_EAAI_2022.pdf
Size
1.152Mb
Format
PDF

Refworks Export

Delicious Save this on Delicious

Google™ Scholar:Tolosana Moranchel, Rubén - Romero-Tapiador, Sergio - Vera Rodríguez, Rubén - Gonzalez Sosa - Fiérrez Aguilar, Julián

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [15090]

Related items

Showing items related by title, author, creator and subject.

  • SVC-onGoing: Signature verification competition 

    Tolosana Moranchel, RubénAutoridad UAM; Vera Rodríguez, RubénAutoridad UAM; Gonzalez-Garcia, Carlos; Fiérrez Aguilar, JuliánAutoridad UAM; Morales Moreno, AythamiAutoridad UAM; Ortega García, JavierAutoridad UAM; Carlos Ruiz-Garcia, Juan; Romero-Tapiador, Sergio; Rengifo, Santiago; Caruana, Miguel; Jiang, Jiajia; Lai, Songxuan; Jin, Lianwen; Zhu, Yecheng; Galbally, Javier; Diaz, Moises; Angel Ferrer, Miguel; Gomez-Barrero, Marta; Hodashinsky, Ilya; Sarin, Konstantin; Slezkin, Artem; Bardamova, Marina; Svetlakov, Mikhail; Saleem, Mohammad; Lia Szcs, Cintia; Kovari, Bence; Pulsmeyer, Falk; Wehbi, Mohamad; Zanca, Dario; Ahmad, Sumaiya; Mishra, Sarthak; Jabin, Suraiya
    2022-02-24
  • GANprintR: Improved Fakes and Evaluation of the State of the Art in Face Manipulation Detection 

    Neves, João C.; Tolosana Moranchel, RubénAutoridad UAM; Vera Rodríguez, RubénAutoridad UAM; Lopes, Vasco; Proença, Hugo; Fiérrez Aguilar, JuliánAutoridad UAM
    2020-07-06
  • Fusion of facial regions using color information in a forensic scenario 

    Tomé González, Pedro; Vera Rodríguez, RubénAutoridad UAM; Fiérrez Aguilar, JuliánAutoridad UAM; Ortega García, JavierAutoridad UAM
    2013-12-01
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram