UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Universidad Autónoma de Madrid
Biblos-e Archivo
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workI want to submit my doctoral thesisFrequently Asked QuestionsCopyrightsFinancial Agencies and OA policy

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Deep Support Vector Classification and Regression

Author
Díaz-Vico, David; Prada, Jesús; Omari, Adil; Dorronsoro Ibero, José Ramónuntranslated
Entity
UAM. Departamento de Ingeniería Informática
Date
2019-05-01
Citation
10.1007/978-3-030-19651-6_4
Deep Support Vector Classification and Regression. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) From Bioinspired Systems and Biomedical Applications to Machine Learning, IWINAC, Lecture Notes in Computer Science 11487 (2019): 33-43
 
 
 
ISBN
978-3-030-19651-6 (online)
DOI
10.1007/978-3-030-19651-6_4
Funded by
With partial support from Spain's grants TIN2016-76406-P and 82013/ICE-2845 CASI-CAM-CM. Work partially supported also by project FACILAyudas Fundación BBVA a Equipos de Investigación Científica 2016, and the UAMADIC Chair for Data Science and Machine Learning. We also gratefully acknowledge the use of the facilities of Centro de Computación Científica (CCC) at UAM
Project
Gobierno de España. TIN2016-76406-P; Comunidad de Madrid. 82013/ICE-2845 CASI-CAM-CM
Editor's Version
https://doi.org/10.1007/978-3-030-19651-6_4
Subjects
Informática
URI
http://hdl.handle.net/10486/702829
Note
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-3-030-19651-6_4
Rights
© Springer Nature

Abstract

Support Vector Machines, SVM, are one of the most popular machine learning models for supervised problems and have proved to achieve great performance in a wide broad of predicting tasks. However, they can suffer from scalability issues when working with large sample sizes, a common situation in the big data era. On the other hand, Deep Neural Networks (DNNs) can handle large datasets with greater ease and in this paper we propose Deep SVM models that combine the highly non-linear feature processing of DNNs with SVM loss functions. As we will show, these models can achieve performances similar to those of standard SVM while having a greater sample scalability
Show full item record

Files in this item

Thumbnail
Name
deep_diaz-vico_IWINAC_2019_ps.pdf
Size
801.3Kb
Format
PDF

Refworks Export

Delicious Save this on Delicious

Google™ Scholar:Díaz-Vico, David - Prada, Jesús - Omari, Adil - Dorronsoro Ibero, José Ramón

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [15086]

Related items

Showing items related by title, author, creator and subject.

  • General noise support vector regression with non-constant uncertainty intervals for solar radiation prediction 

    Prada, J; Dorronsoro Ibero, José RamónAutoridad UAM
    2018
  • Deep fisher discriminant analysis 

    Díaz-Vico, David; Omari, Adil; Torres Barrán, Alberto; Dorronsoro Ibero, José RamónAutoridad UAM
    2017
  • Deep Neural Networks for Wind and Solar Energy Prediction 

    Díaz–Vico, David; Torres–Barrán, Alberto; Omari, Adil; Dorronsoro Ibero, José RamónAutoridad UAM
    2017-12-01
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram