UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Deep Neural Networks for Wind and Solar Energy Prediction

Author
Díaz–Vico, David; Torres–Barrán, Alberto; Omari, Adil; Dorronsoro Ibero, José Ramónuntranslated
Entity
UAM. Departamento de Ingeniería Informática
Publisher
Springer Nature
Date
2017-12-01
Citation
10.1007/s11063-017-9613-7
Díaz–Vico, D., Torres–Barrán, A., Omari, A., Dorronsoro, José R., Deep Neural Networks for Wind and Solar Energy Prediction. Neural Processing Letters 46 (2017): 829-844
 
 
 
ISSN
1573-773X (online); 1370-4621 (print)
DOI
10.1007/s11063-017-9613-7
Funded by
With partial support from Spain’s Grants TIN2013-42351-P (MINECO), S2013/ICE2845 CASI-CAM-CM (Comunidad de Madrid), FACIL (Ayudas Fundación BBVA a Equipos de Investigación Científica 2016) and the UAM–ADIC Chair for Data Science and Machine Learning. The second author is also kindly supported by the FPU-MEC Grant AP-2012-5163. The authors gratefully acknowledge access to the MARS repository granted by the ECMWF, the use of the facilities of Centro de Computación Científica (CCC) at UAM and thank Red Eléctrica de España for kindly supplying wind energy production data and to Sotavento for making their production data publicly available.
Project
Gobierno de España. TIN2013-42351-P; Comunidad de Madrid. S2013/ICE2845/CASI-CAM-CM
Editor's Version
https://doi.org/10.1007/s11063-017-9613-7
Subjects
Convolutional neural network; Deep learning; Solar energy; Wind energy; Informática
URI
http://hdl.handle.net/10486/702830
Note
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s11063-017-9613-7
Rights
© Springer Nature

Abstract

Deep Learning models are recently receiving a large attention because of their very powerful modeling abilities, particularly on inputs that have a intrinsic one- or two-dimensional structure that can be captured and exploited by convolutional layers. In this work we will apply Deep Neural Networks (DNNs) in two problems, wind energy and daily solar radiation prediction, whose inputs, derived from Numerical Weather Prediction systems, have a clear spatial structure. As we shall see, the predictions of single deep models and, more so, of DNN ensembles can improve on those of Support Vector Regression, a Machine Learning method that can be considered the state of the art for regression
Show full item record

Files in this item

Thumbnail
Name
deep_diaz-vico_neural_proc_lett_2017_ps.pdf
Size
820.9Kb
Format
PDF

Refworks Export

Google™ Scholar:Díaz–Vico, David - Torres–Barrán, Alberto - Omari, Adil - Dorronsoro Ibero, José Ramón

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16630]

Related items

Showing items related by title, author, creator and subject.

  • Deep neural networks for wind energy prediction 

    Díaz-Vico, David; Torres, Alberto; Dorronsoro Ibero, José RamónAutoridad UAM
    2015-01-01
  • Deep fisher discriminant analysis 

    Díaz-Vico, David; Omari, Adil; Torres Barrán, Alberto; Dorronsoro Ibero, José RamónAutoridad UAM
    2017
  • Deep Support Vector Classification and Regression 

    Díaz-Vico, David; Prada, Jesús; Omari, Adil; Dorronsoro Ibero, José RamónAutoridad UAM
    2019-05-01
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram