Deep Neural Networks for Wind and Solar Energy Prediction
Entidad
UAM. Departamento de Ingeniería InformáticaEditor
Springer NatureFecha de edición
2017-12-01Cita
10.1007/s11063-017-9613-7
Díaz–Vico, D., Torres–Barrán, A., Omari, A., Dorronsoro, José R., Deep Neural Networks for Wind and Solar Energy Prediction. Neural Processing Letters 46 (2017): 829-844
ISSN
1573-773X (online); 1370-4621 (print)DOI
10.1007/s11063-017-9613-7Financiado por
With partial support from Spain’s Grants TIN2013-42351-P (MINECO), S2013/ICE2845 CASI-CAM-CM (Comunidad de Madrid), FACIL (Ayudas Fundación BBVA a Equipos de Investigación Científica 2016) and the UAM–ADIC Chair for Data Science and Machine Learning. The second author is also kindly supported by the FPU-MEC Grant AP-2012-5163. The authors gratefully acknowledge access to the MARS repository granted by the ECMWF, the use of the facilities of Centro de Computación Científica (CCC) at UAM and thank Red Eléctrica de España for kindly supplying wind energy production data and to Sotavento for making their production data publicly available.Proyecto
Gobierno de España. TIN2013-42351-P; Comunidad de Madrid. S2013/ICE2845/CASI-CAM-CMVersión del editor
https://doi.org/10.1007/s11063-017-9613-7Materias
Convolutional neural network; Deep learning; Solar energy; Wind energy; InformáticaNota
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s11063-017-9613-7Derechos
© Springer NatureResumen
Deep Learning models are recently receiving a large attention because of their very powerful modeling abilities, particularly on inputs that have a intrinsic one- or two-dimensional structure that can be captured and exploited by convolutional layers. In this work we will apply Deep Neural Networks (DNNs) in two problems, wind energy and daily solar radiation prediction, whose inputs, derived from Numerical Weather Prediction systems, have a clear spatial structure. As we shall see, the predictions of single deep models and, more so, of DNN ensembles can improve on those of Support Vector Regression, a Machine Learning method that can be considered the state of the art for regression
Lista de ficheros
Google Scholar:Díaz–Vico, David
-
Torres–Barrán, Alberto
-
Omari, Adil
-
Dorronsoro Ibero, José Ramón
Lista de colecciones del ítem
Registros relacionados
Mostrando ítems relacionados por título, autor, creador y materia.