UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Importance Weighted Adversarial Variational Bayes

Author
Gómez-Sancho, Marta; Hernández Lobato, Danieluntranslated
Entity
UAM. Departamento de Ingeniería Informática
Publisher
Springer Nature
Date
2020-01-01
Citation
10.1007/978-3-030-61705-9_31
Gómez-Sancho, M., Hernández-Lobato, D. (2020). Importance Weighted Adversarial Variational Bayes. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems, HAIS. Lecture Notes in Computer Science 12344 (2020): 374-386
 
 
 
ISBN
978-3-030-61705-9
DOI
10.1007/978-3-030-61705-9_31
Funded by
We acknowledge the use of the facilities of Centro de Computacion Cientıfica at UAM and support from the Spanish Plan Nacional I+D+i (grants TIN2016–76406-P, TEC2016–81900-REDT and PID2019–106827GB-I00) and from Comunidad de Madrid (grant PEJ-2017-AI TIC-6464)
Project
Gobierno de España. TIN2016–76406-P; Gobierno de España. TEC2016–81900-REDT; Gobierno de España. PID2019–106827GB-I00; Comunidad de Madrid. PEJ-2017-AI/TIC-6464
Editor's Version
https://doi.org/10.1007/978-3-030-61705-9_31
Subjects
Adversarial variational bayes; Generative models; Importance weighted autoencoder; Variational autoencoder; Informática
URI
http://hdl.handle.net/10486/702879
Note
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-3-030-61705-9_31
Rights
© Springer Nature

Abstract

Adversarial variational Bayes (AVB) can infer the parameters of a generative model from the data using approximate maximum likelihood. The likelihood of deep generative models model is intractable. However, it can be approximated by a lower bound obtained in terms of an approximate posterior distribution of the latent variables of the data q. The closer q is to the actual posterior, the tighter the lower bound is. Therefore, by maximizing the lower bound one should expect to also maximize the likelihood. Traditionally, the approximate distribution q is Gaussian. AVB relaxes this limitation and allows for flexible distributions that may lack a closed-form probability density function. Implicit distributions obtained by letting a source of Gaussian noise go through a deep neural network are examples of these distributions. Here, we combine AVB with the importance weighted autoencoder, a technique that has been shown to provide a tighter lower bound on the marginal likelihood. This is expected to lead to a more accurate parameter estimation of the generative model via approximate maximum likelihood. We have evaluated the proposed method on three datasets, MNIST, Fashion MNIST, and Omniglot. The experiments show that the proposed method improves the test log-likelihood of a generative model trained using AVB
Show full item record

Files in this item

Thumbnail
Name
importance_lobato_HAIS_2020_ps.pdf
Size
880.4Kb
Format
PDF

Refworks Export

Google™ Scholar:Gómez-Sancho, Marta - Hernández Lobato, Daniel

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16522]

Related items

Showing items related by title, author, creator and subject.

  • Effects of milk supplementation with conjugated linoleic acid on weight control and body composition in healthy overweight people 

    López Plaza, Bricia; Bermejo, Laura María; Weber, Thabata Koester; Parra, Pilar; Serra, Francisca; Hernández, Marta J.; Milla, Samara Palma; Gómez Candela, CarmenAutoridad UAM
    2013-12-01
  • Leukocyte profile variation in Dupont’s Lark (Chersophilus duponti) in Spain and Morocco 

    Bustillo de la Rosa, DanielAutoridad UAM; Calero-Riestra, María; Pérez Granados, Cristian; Mereu, Silvia; Morales Prieto, Manuel BorjaAutoridad UAM; Traba Díaz, JuanAutoridad UAM; López-Iborra, Germán M.; Barrero Diego, Adrián; Gómez Catasus, JuliaAutoridad UAM; Reverter Cid, MargaritaAutoridad UAM; Viñuela, Javier; Oñate Rubalcaba, Juan JoséAutoridad UAM; Hervás Bengoechea, Israel; Hernández Justribó, Jorge; García, Jesús T.
    2021-12-26
  • Generalized spike-and-slab priors for bayesian group feature selection using expectation propagation 

    Hernández Lobato, DanielAutoridad UAM; Hernández-Lobato, José Miguel; Dupont, Pierre
    2013
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram