Show simple item record

dc.contributor.authorGómez-Sancho, Martaes_ES
dc.contributor.authorHernández Lobato, Daniel es_ES
dc.contributor.editorCal, Enrique Antonio de laes_ES
dc.contributor.editorVillar Flecha, José Ramónes_ES
dc.contributor.editorQuintián, Héctores_ES
dc.contributor.editorCorchado, Emilioes_ES
dc.contributor.otherUAM. Departamento de Ingeniería Informáticaes_ES
dc.date.accessioned2022-06-30T17:23:14Zen_US
dc.date.available2022-06-30T17:23:14Zen_US
dc.date.issued2020-11-04en_US
dc.identifier.citationHybrid Artificial Intelligent Systems, HAIS. Lecture Notes in Computer Science, Volume 12344. Springer, 2020. 374-386en_US
dc.identifier.isbn978-3-030-61705-9es_ES
dc.identifier.urihttp://hdl.handle.net/10486/702879en_US
dc.descriptionThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: DOI: 10.1007/978-3-030-61705-9_31en_US
dc.description.abstractAdversarial variational Bayes (AVB) can infer the parameters of a generative model from the data using approximate maximum likelihood. The likelihood of deep generative models model is intractable. However, it can be approximated by a lower bound obtained in terms of an approximate posterior distribution of the latent variables of the data q. The closer q is to the actual posterior, the tighter the lower bound is. Therefore, by maximizing the lower bound one should expect to also maximize the likelihood. Traditionally, the approximate distribution q is Gaussian. AVB relaxes this limitation and allows for flexible distributions that may lack a closed-form probability density function. Implicit distributions obtained by letting a source of Gaussian noise go through a deep neural network are examples of these distributions. Here, we combine AVB with the importance weighted autoencoder, a technique that has been shown to provide a tighter lower bound on the marginal likelihood. This is expected to lead to a more accurate parameter estimation of the generative model via approximate maximum likelihood. We have evaluated the proposed method on three datasets, MNIST, Fashion MNIST, and Omniglot. The experiments show that the proposed method improves the test log-likelihood of a generative model trained using AVBen_US
dc.description.sponsorshipWe acknowledge the use of the facilities of Centro de Computacion Cientıfica at UAM and support from the Spanish Plan Nacional I+D+i (grants TIN2016–76406-P, TEC2016–81900-REDT and PID2019–106827GB-I00) and from Comunidad de Madrid (grant PEJ-2017-AI TIC-6464)en_US
dc.format.extent13 pag.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.rights© 2020 Springer Nature Switzerland AGen_US
dc.subject.otherAdversarial variational bayesen_US
dc.subject.otherGenerative modelsen_US
dc.subject.otherImportance weighted autoencoderen_US
dc.subject.otherVariational autoencoderen_US
dc.titleImportance Weighted Adversarial Variational Bayesen_US
dc.typebookParten_US
dc.typeconferenceObjecten_US
dc.subject.ecienciaInformáticaes_ES
dc.date.embargoend2021-11-04
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-030-61705-9_31en_US
dc.identifier.doi10.1007/978-3-030-61705-9_31es_ES
dc.identifier.publicationfirstpage374es_ES
dc.identifier.publicationlastpage386es_ES
dc.relation.projectIDGobierno de España. TIN2016–76406-Pes_ES
dc.relation.projectIDGobierno de España. TEC2016–81900-REDTes_ES
dc.relation.projectIDGobierno de España. PID2019–106827GB-I00es_ES
dc.relation.projectIDComunidad de Madrid. PEJ-2017-AI/TIC-6464es_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen_US
dc.rights.accessRightsopenAccessen_US
dc.facultadUAMEscuela Politécnica Superiores_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record