UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 2 - Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • View Item
  •   Biblos-e Archivo
  • 2 - Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.)
  • View Item

Novel activities and new members of b-family polymerases with applications in biotechnology

Title (trans.)
Nuevas actividades y nuevos miembros de la familia B de las DNA polimerasas con aplicaciones biotecnológicas
Author
Ordoñez Cencerrado, Carlos David
Advisor
Salas Falgueras, Margarita; Redrejo Rodríguez, Modestountranslated
Entity
UAM. Departamento de Biología Molecular; Centro de Biología Molecular Severo Ochoa (CBM)
Date
2022-04-29
Subjects
ADN polimerasas; Biología y Biomedicina / Biología
URI
http://hdl.handle.net/10486/702958
Note
Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de Lectura: 29-04-2022
Esta tesis tiene embargado el acceso al texto completo hasta el 29-04-2025

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Abstract

DNA amplification is a powerful technique widely employed for pathogen detection, biomedical analysis, or genetic research. This process relies on high-fidelity DNA polymerases (DNAPs). One of the mostly used enzymes all over the world is the DNAP from the bacteriophage Φ29 (Φ29DNAP), member of B-family DNAPs (PolBs). This PolB can couple strand displacement capacity with a highly processive and faithful DNA synthesis. These features allowed the development of very efficient isothermal DNA amplification protocols, like multiple displacement DNA amplification (MDA). Conversely, the use of highfidelity DNAPs entails some shortcomings; they are usually blocked by modified bases or DNA lesions, which impairs the amplification of damaged DNA samples. This work aims to increase the variety of DNA amplification methods, providing alternatives for amplification of challenging samples, such as those from forensic or archeological sources as well as metagenomes. Hence, we focused on the study of PolBs with non-canonical activities and the influence of divalent cations on DNA synthesis and amplification proficiency. We show how the DNA amplification yield of the DNAP from bacteriophage Bam35, a processive and faithful PolB with intrinsic strand displacement and translesion DNA synthesis (TLS) capacities, could be greatly enhanced by the fusion of DNA binding domains. Furthermore, we used rolling circle amplification (RCA) assays with synthetic circular singlestranded DNA containing modified bases as template to assess the increment on the processive replication of damaged DNA. Moreover, DNA synthesis opposite to DNA lesions was improved by the employment of Co2+ or a fine-tuned combination of Mg2+ and Mn2+ as cofactors without substantially reducing the enzyme fidelity. In addition, we characterized a new tectiviral PolB infecting a thermoresistant host. This new PolB has proofreading 3’-5’ exonuclease activity, TLS opposite abasic sites and is thermoresistant up to 55 ºC. We have also identified and characterized a new group of PolBs that showed primerindependent DNA synthesis as well as TLS capacity. This new PolB clade, named piPolBs, could be considered a third major group of PolBs, besides protein-primed PolBs and PolBs primed by RNA or DNA. Due to its high processivity and strand displacement capacity, a representative member of the piPolBs group was employed to perform MDA in the absence of primers. Thus, we developed a novel isothermal DNA amplification protocol that only employs one DNAP, without the requirement of exogenous oligonucleotides or primases for priming of the DNA synthesis. Moreover, the yield of this reaction could be greatly enhanced by the addition of the more efficient and processive Φ29DNAP, reaching similar o higher amplification rates than other commercially available methods in the tested conditions. In summary, our results show that some faithful PolBs can combine high processivity and TLS capacity. Thus, the characterization of new naturally occurring DNAPs or engineered enzymes, as well as the variation of metallic cofactors can contribute to the development of methods for isothermal amplification of damaged DNA samples or novel efficient MDA protocols
Show full item record

Files in this item

Name
ordonez_cencerrado_carlos_david.pdf
Size
11.82Mb
Format
PDF
Description
Texto de la Tesis Doctoral

Refworks Export

Google™ Scholar:Ordoñez Cencerrado, Carlos David

This item appears in the following Collection(s)

  • Trabajos de estudiantes (tesis doctorales, TFMs, TFGs, etc.) [19712]

Related items

Showing items related by title, author, creator and subject.

  • Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements 

    Redrejo Rodríguez, ModestoAutoridad UAM; Ordóñez, Carlos D.; Berjón-Otero, Mónica; Moreno-González, Juan; Aparicio-Maldonado, Cristian; Forterre, Patrick; Salas, Margarita; Krupovic, Mart
    2017-11-07
  • miR-127 Protects proximal tubule cells against ischemia/reperfusion: identification of kinesin family member 3B as miR-127 target 

    Aguado-Fraile, Elia; Ramos, Edurne; Sáenz-Morales, David; Conde, Elisa; Blanco-Sánchez, Ignacio; Stamatakis, Konstantinos; del Peso, Luis; Cuppen, Edwin; Brüne, Bernhard; García Bermejo, María Laura
    2012-09-04
  • Regulation of B-cell development and tolerance by different members of the miR-17∼1/492 family microRNAs 

    Lai, Maoyi; Gonzalez-Martin, Alicia; Cooper, Anthony B.; Oda, Hiroyo; Jin, Hyun Yong; Shepherd, Jovan; He, Linling; Zhu, Jiang; Nemazee, David; Xiao, Changchun
    2016-08-02
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad