Novel activities and new members of b-family polymerases with applications in biotechnology
Title (trans.)
Nuevas actividades y nuevos miembros de la familia B de las DNA polimerasas con aplicaciones biotecnológicasEntity
UAM. Departamento de Biología Molecular; Centro de Biología Molecular Severo Ochoa (CBM)Date
2022-04-29Subjects
ADN polimerasas; Biología y Biomedicina / BiologíaNote
Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de Lectura: 29-04-2022Esta tesis tiene embargado el acceso al texto completo hasta el 29-04-2025

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Abstract
DNA amplification is a powerful technique widely employed for pathogen detection,
biomedical analysis, or genetic research. This process relies on high-fidelity DNA
polymerases (DNAPs). One of the mostly used enzymes all over the world is the DNAP from
the bacteriophage Φ29 (Φ29DNAP), member of B-family DNAPs (PolBs). This PolB can
couple strand displacement capacity with a highly processive and faithful DNA synthesis.
These features allowed the development of very efficient isothermal DNA amplification
protocols, like multiple displacement DNA amplification (MDA). Conversely, the use of highfidelity
DNAPs entails some shortcomings; they are usually blocked by modified bases or DNA
lesions, which impairs the amplification of damaged DNA samples. This work aims to increase
the variety of DNA amplification methods, providing alternatives for amplification of
challenging samples, such as those from forensic or archeological sources as well as
metagenomes. Hence, we focused on the study of PolBs with non-canonical activities and the
influence of divalent cations on DNA synthesis and amplification proficiency.
We show how the DNA amplification yield of the DNAP from bacteriophage Bam35, a
processive and faithful PolB with intrinsic strand displacement and translesion DNA synthesis
(TLS) capacities, could be greatly enhanced by the fusion of DNA binding domains.
Furthermore, we used rolling circle amplification (RCA) assays with synthetic circular singlestranded
DNA containing modified bases as template to assess the increment on the
processive replication of damaged DNA. Moreover, DNA synthesis opposite to DNA lesions
was improved by the employment of Co2+ or a fine-tuned combination of Mg2+ and Mn2+ as
cofactors without substantially reducing the enzyme fidelity. In addition, we characterized a
new tectiviral PolB infecting a thermoresistant host. This new PolB has proofreading 3’-5’
exonuclease activity, TLS opposite abasic sites and is thermoresistant up to 55 ºC.
We have also identified and characterized a new group of PolBs that showed primerindependent
DNA synthesis as well as TLS capacity. This new PolB clade, named piPolBs,
could be considered a third major group of PolBs, besides protein-primed PolBs and PolBs
primed by RNA or DNA. Due to its high processivity and strand displacement capacity, a
representative member of the piPolBs group was employed to perform MDA in the absence
of primers. Thus, we developed a novel isothermal DNA amplification protocol that only
employs one DNAP, without the requirement of exogenous oligonucleotides or primases for
priming of the DNA synthesis. Moreover, the yield of this reaction could be greatly enhanced
by the addition of the more efficient and processive Φ29DNAP, reaching similar o higher
amplification rates than other commercially available methods in the tested conditions.
In summary, our results show that some faithful PolBs can combine high processivity and
TLS capacity. Thus, the characterization of new naturally occurring DNAPs or engineered
enzymes, as well as the variation of metallic cofactors can contribute to the development of
methods for isothermal amplification of damaged DNA samples or novel efficient MDA
protocols
Files in this item
Size
11.82Mb
Format
PDF
Description
Texto de la Tesis Doctoral
Google Scholar:Ordoñez Cencerrado, Carlos David
This item appears in the following Collection(s)
Related items
Showing items related by title, author, creator and subject.
-
miR-127 Protects proximal tubule cells against ischemia/reperfusion: identification of kinesin family member 3B as miR-127 target
Aguado-Fraile, Elia; Ramos, Edurne; Sáenz-Morales, David; Conde, Elisa; Blanco-Sánchez, Ignacio; Stamatakis, Konstantinos; del Peso, Luis; Cuppen, Edwin; Brüne, Bernhard; García Bermejo, María Laura
2012-09-04 -
Regulation of B-cell development and tolerance by different members of the miR-17∼1/492 family microRNAs
Lai, Maoyi; Gonzalez-Martin, Alicia; Cooper, Anthony B.; Oda, Hiroyo; Jin, Hyun Yong; Shepherd, Jovan; He, Linling; Zhu, Jiang; Nemazee, David; Xiao, Changchun
2016-08-02