UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Discovering Related Users in Location-based Social Networks

Author
Torrijos, Sergio; Bellogin Kouki, Alejandrountranslated; Sánchez, Pablo
Entity
UAM. Departamento de Ingeniería Informática
Publisher
Association for Computing Machinery
Date
2020-07-13
Citation
10.1145/3340631.3394882
UMAP '20: 28th ACM Conference on User Modeling, Adaptation and Personalization 8 (2020): 353-357
 
 
 
ISBN
9781450368612
DOI
10.1145/3340631.3394882
Funded by
This work has been funded by the Ministerio de Ciencia, Innovación y Universidades (reference TIN2016-80630-P) and by the European Social Fund (ESF), within the 2017 call for predoctoral contracts. The first author also acknowledges the Ministerio de Educación y Formación Profesional, within the 2019-2020 call for collaboration grants
Project
Gobierno de España. TIN2016-80630-P
Editor's Version
https://doi.org/10.1145/3340631.3394882
Subjects
location-based social networks; neighbours; trajectory similarity; Informática
URI
http://hdl.handle.net/10486/703005
Note
© ACM 2020 This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in UMAP '20: Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, https://doi.org/10.1145/3340631.3394882
Rights
© Association for Computring Machinery

Abstract

Users from Location-Based Social Networks can be characterised by how and where they move. However, most of the works that exploit this type of information neglect either its sequential or its geographical properties. In this article, we focus on a specific family of recommender systems, those based on nearest neighbours; we define related users based on common check-ins and similar trajectories and analyse their effects on the recommendations. For this purpose, we use a real-world dataset and compare the performance on different dimensions against several state-of-the-art algorithms. The results show that better neighbours could be discovered with these approaches if we want to promote novel and diverse recommendations
Show full item record

Files in this item

Thumbnail
Name
discovering_torrijos_UMAS_2020_PS.pdf
Size
335.0Kb
Format
PDF

Refworks Export

Google™ Scholar:Torrijos, Sergio - Bellogin Kouki, Alejandro - Sánchez, Pablo

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [18125]

Related items

Showing items related by title, author, creator and subject.

  • Bias characterization, assessment, and mitigation in location-based recommender systems 

    Sánchez Olivares, PabloAutoridad UAM; Bellogin Kouki, AlejandroAutoridad UAM; Boratto, Ludovico
    2023-02-14
  • Self-adjusting hybrid recommenders based on social network analysis 

    Bellogin Kouki, AlejandroAutoridad UAM; Castells Azpilicueta, PabloAutoridad UAM; Cantador Gutiérrez, IvánAutoridad UAM
    2011
  • Analysis of co-movement pattern mining methods for recommendation 

    Bellogin Kouki, AlejandroAutoridad UAM; Torrijos, Sergio
    2020-07
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad