Show simple item record

dc.contributor.authorDaza García, Roberto es_ES
dc.contributor.authorMorales Moreno, Aythami es_ES
dc.contributor.authorFiérrez Aguilar, Julián es_ES
dc.contributor.authorTolosana Moranchel, Rubén es_ES
dc.contributor.editorTruong, Khietes_ES
dc.contributor.editorHeylen, Dirken_US
dc.contributor.editorCzerwinski, Maryen_US
dc.contributor.otherUAM. Departamento de Tecnología Electrónica y de las Comunicacioneses_ES
dc.date.accessioned2022-07-06T09:07:37Zen_US
dc.date.available2022-07-06T09:07:37Zen_US
dc.date.issued2020-10-25en_US
dc.identifier.citationR. Daza, A. Morales, J. Fiérrez and R. Tolosna, mEBAL: A Multimodal Database for Eye Blink Detection and Attention Level Estimation. In ICMI '20 Companion: Companion Publication of the 2020 International Conference on Multimodal Interaction, October 25 - 29, 2020 Utrech, the Netherlands (2020): 32-36en_US
dc.identifier.isbn9781450380027es_ES
dc.identifier.urihttp://hdl.handle.net/10486/703010en_US
dc.description© ACM 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ICMI '20 Companion, October 25–29, 2020, Virtual Event, Netherlands, https://doi.org/10.1145/3395035.3425257en_US
dc.description.abstractThis work presents mEBAL, a multimodal database for eye blink detection and attention level estimation. The eye blink frequency is related to the cognitive activity and automatic detectors of eye blinks have been proposed for many tasks including attention level estimation, analysis of neuro-degenerative diseases, deception recognition, drive fatigue detection, or face anti-spoofing. However, most existing databases and algorithms in this area are limited to experiments involving only a few hundred samples and individual sensors like face cameras. The proposed mEBAL improves previous databases in terms of acquisition sensors and samples. In particular, three different sensors are simultaneously considered: Near Infrared (NIR) and RGB cameras to capture the face gestures and an Electroencephalography (EEG) band to capture the cognitive activity of the user and blinking events. Regarding the size of mEBAL, it comprises 6,000 samples and the corresponding attention level from 38 different students while conducting a number of e-learning tasks of varying difficulty. In addition to presenting mEBAL, we also include preliminary experiments on: i) eye blink detection using Convolutional Neural Networks (CNN) with the facial images, and ii) attention level estimation of the students based on their eye blink frequencyen_US
dc.description.sponsorshipThis work has been supported by projects: PRIMA (ITN-2019-860315), TRESPASS-ETN (ITN-2019-860813), IDEA-FAST (IMI2- 2018-15-two-stage-853981), BIBECA (RTI2018-101248-B-I00 MINECOFEDER), and edBB (Universidad Autonoma de Madrid). Ruben Tolosana and postdoc support from CAM/FEDER. Roberto Daza is supported by a PhD FPI fellowship from MINECO-FEDERen_US
dc.format.extent6 pag.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoengen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.ispartofICMI 2020 Companion - Companion Publication of the 2020 International Conference on Multimodal Interactionen_US
dc.rights© Association for Computring Machineryen_US
dc.subject.otherAttention levelen_US
dc.subject.otherCognitive modellingen_US
dc.subject.otherE-learningen_US
dc.subject.otherEye blinken_US
dc.titleMEBAL: A multimodal database for eye blink detection and attention level estimationes_ES
dc.typebookParten_US
dc.typeconferenceObjecten_US
dc.subject.ecienciaTelecomunicacioneses_ES
dc.relation.publisherversionhttps://doi.org/10.1145/3395035.3425257es_ES
dc.identifier.doi10.1145/3395035.3425257es_ES
dc.identifier.publicationfirstpage32es_ES
dc.identifier.publicationlastpage36es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/860315/EU/PriMa-ITNes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/860813/EU/TReSPAsS-ETNes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/853981/EU/IDEA-FASTes_ES
dc.relation.projectIDGobierno de España. RTI2018-101248-B-I00es_ES
dc.type.versioninfo:eu-repo/semantics/submittedVersionen_US
dc.contributor.groupAnálisis y Tratamiento de Voz y Señales Biométricas (ING EPS-002)es_ES
dc.rights.accessRightsopenAccessen_US
dc.facultadUAMEscuela Politécnica Superiores_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record