Novel null tests for the spatial curvature and homogeneity of the Universe and their machine learning reconstructions
Entity
UAM. Departamento de Física TeóricaPublisher
American Physical SocietyDate
2021-05-15Citation
10.1103/PhysRevD.103.103539
Physical Review D 103.10 (2021): 103539
ISSN
2470-0010 (print); 2470-0029 (online)DOI
10.1103/PhysRevD.103.103539Project
Gobierno de España. PGC2018-094773-B-C32Editor's Version
https://doi.org/10.1103/PhysRevD.103.103539Subjects
Cosmos; Chaplygin Gas; Cosmological Models; FísicaRights
© 2021 American Physical SocietyFiles in this item
Google Scholar:Arjona, Rubén
-
Nesseris, Savvas
This item appears in the following Collection(s)
Related items
Showing items related by title, author, creator and subject.
-
Machine learning and cosmographic reconstructions of quintessence and the swampland conjectures
Arjona Fernández, Rubén; Nesseris, Savvas
2021-03-29 -
Machine learning improved fits of the sound horizon at the baryon drag epoch
Aizpuru, Andoni; Arjona Fernández, Rubén; Nesseris, Savvas
2021-08-16 -
Machine learning forecasts of the cosmic distance duality relation with strongly lensed gravitational wave events
Arjona Fernández, Rubén; Lin, Hai-Nan; Nesseris, Savvas; Tang, Li
2021-05-11