Towards automatic waste containers management in cities via computer vision: containers localization and geo-positioning in city maps
Entity
UAM. Departamento de Tecnología Electrónica y de las ComunicacionesPublisher
ElsevierDate
2022-08-16Citation
10.1016/j.wasman.2022.08.007
Waste Management 152 (2022): 59-68
ISSN
0956-053X (print)DOI
10.1016/j.wasman.2022.08.007Funded by
This work has been supported by URBASER S.A. and the Universidad Autonoma ´ de Madrid under project REVGA of the ”Segunda Edicion ´ del Programa de Fomento de la Transferencia del Conocimiento” callEditor's Version
https://doi.org/10.1016/j.wasman.2022.08.007Subjects
Computer Vision; Deep Learning; Object detection; Waste container localization; Electrónica; TelecomunicacionesRights
© 2022 The Authors
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Abstract
This paper describes the scientific achievements of a collaboration between a research group and the waste management division of a company. While these results might be the basis for several practical or commercial developments, we here focus on a novel scientific contribution: a methodology to automatically generate geo-located waste container maps. It is based on the use of Computer Vision algorithms to detect waste containers and identify their geographic location and dimensions. Algorithms analyze a video sequence and provide an automatic discrimination between images with and without containers. More precisely, two state-of-the-art object detectors based on deep learning techniques have been selected for testing, according to their performance and to their adaptability to an on-board real-time environment: EfficientDet and YOLOv5. Experimental results indicate that the proposed visual model for waste container detection is able to effectively operate with consistent performance disregarding the container type (organic waste, plastic, glass and paper recycling,…) and the city layout, which has been assessed by evaluating it on eleven different Spanish cities that vary in terms of size, climate, urban layout and containers’ appearance
Files in this item
Google Scholar:Moral De Eusebio, Paula
-
García Martín, Álvaro
-
Escudero Viñolo, Marcos
-
Martínez Sánchez, José María
-
Bescos Cano, Jesús
-
Peñuela, Jesús
-
Martínez, Juan Carlos
-
Alvis, Gonzalo
This item appears in the following Collection(s)
Related items
Showing items related by title, author, creator and subject.
-
Acceptability and feasibility of a virtual community of practice to primary care professionals regarding patient empowerment: A qualitative pilot study
Bermejo-Caja, Carlos Jesús; Koatz, Débora; Orrego, Carola; Perestelo-Pérez, Lilisbeth; González-González, Ana Isabel; Ballester, Marta; Pacheco-Huergo, Valeria; Del Rey-Granado, Yolanda; Muñoz-Balsa, Marcos; Ramírez-Puerta, Ana Belén; Canellas-Criado, Yolanda; Pérez-Rivas, Francisco Javier; Toledo-Chávarri, Ana; Martínez Marcos, María Mercedes; Alejo-Díaz-Zorita, Concepción; Barbero-Macías, Cynthia A.; Borrell-Punzón, Fernando; Bueno-Rodriguez, Beatriz; Colmena-Martin, Begoña; Del Valle-De Joz, Isabel; Gamboa-Puñal, Juan Carlos; García-Valverde, Concepción; Gómez-Garzón, Luis Miguel; Gómez-López, Arturo; Hernaz-Guijo, Alejandro; Herrera-León, Walter Nery; Iniesta-González, Irene; Leza-Leza, Margarita; Melchor-Canelo, María Aranzazu; Muñoz-Quirós-Aliaga, Sagrario; Oria-Fernández, Ángela; Pertierra-Galindo, Nuria; Prieto-Barbosa, M. Dolores; Robledo-Vázquez, Milagros; Ruiz-López, Marta; Sánchez-Cruz, M. Carmen; Sánchez-De-Eusebio, M. Ángeles; Seijas-Martínez-Echevarría, M. Jose; Tovar-García, Carmen Paola; Vicente-Diez, Jose Ignacio; Villanueva-Sanz, Cristina
2019-06-20