UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Exploiting semantic segmentation to boost reinforcement learning in video game environments

Author
Montalvo Rodrigo, Javier; García Martín, Álvarountranslated; Bescos Cano, Jesúsuntranslated
Entity
UAM. Departamento de Tecnología Electrónica y de las Comunicaciones
Publisher
Springer
Date
2022-09-15
Citation
10.1007/s11042-022-13695-1
Multimedia Tools and Applications (2022): 1-19
 
 
 
ISSN
1380-7501 (print); 1573-7721 (online)
DOI
10.1007/s11042-022-13695-1
Funded by
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work is part of the preliminary tasks related to the Harvesting Visual Data (HVD) project (PID2021- 125051OB-I00) funded by the Ministerio de Ciencia e Innovacin of the Spanish Government
Project
Gobierno de España. PID2021-125051OB-I00
Editor's Version
https://doi.org/10.1007/s11042-022-13695-1
Subjects
Semantic segmentation; Reinforcement learning; Domain adaptation; Synthetic data; Electrónica; Telecomunicaciones
URI
http://hdl.handle.net/10486/704109
Note
The version of record of this article, first published in Multimedia Tools and Applications , is available online at Publisher’s website: http://dx.doi.org/10.1007/s11042-022-13695-1
Rights
© The Author(s) 2022

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

In this work we explore enhancing performance of reinforcement learning algorithms in video game environments by feeding it better, more relevant data. For this purpose, we use semantic segmentation to transform the images that would be used as input for the reinforcement learning algorithm from their original domain to a simplified semantic domain with just silhouettes and class labels instead of textures and colors, and then we train the reinforcement learning algorithm with these simplified images. We have conducted different experiments to study multiple aspects: feasibility of our proposal, and potential benefits to model generalization and transfer learning. Experiments have been performed with the Super Mario Bros video game as the testing environment. Our results show multiple advantages for this method. First, it proves that using semantic segmentation enables reaching higher performance than the baseline reinforcement learning algorithm without modifying the actual algorithm, and in fewer episodes; second, it shows noticeable performance improvements when training on multiple levels at the same time; and finally, it allows to apply transfer learning for models trained on visually different environments. We conclude that using semantic segmentation can certainly help reinforcement learning algorithms that work with visual data, by refining it. Our results also suggest that other computer vision techniques may also be beneficial for data prepossessing. Models and code will be available on github upon acceptance
Show full item record

Files in this item

Thumbnail
Name
exploiting_montalvo_multimed_tools_appl_2022.pdf
Size
2.682Mb
Format
PDF
Description
Artículo

Refworks Export

Google™ Scholar:Montalvo Rodrigo, Javier - García Martín, Álvaro - Bescos Cano, Jesús

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [18125]

Related items

Showing items related by title, author, creator and subject.

  • DiVA: A Distributed Video Analysis framework applied to video-surveillance systems 

    San Miguel Avedillo, Juan CarlosAutoridad UAM; Bescos Cano, JesúsAutoridad UAM; Martínez Sánchez, José MaríaAutoridad UAM; García Martín, ÁlvaroAutoridad UAM
    2008
  • Semantic-aware scene recognition 

    López Cifuentes, AlejandroAutoridad UAM; Escudero Viñolo, MarcosAutoridad UAM; Bescos Cano, JesúsAutoridad UAM; García Martín, ÁlvaroAutoridad UAM
    2020-06-01
  • Semantic Segmentation in 2D Videogames 

    Montalvo Rodrigo, Javier
    2021-06
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad