Show simple item record

dc.contributor.authorMontalvo Rodrigo, Javier
dc.contributor.authorGarcía Martín, Álvaro 
dc.contributor.authorBescos Cano, Jesús 
dc.contributor.otherUAM. Departamento de Tecnología Electrónica y de las Comunicacioneses_ES
dc.date.accessioned2022-09-19T09:08:18Z
dc.date.available2022-09-19T09:08:18Z
dc.date.issued2022-09-15
dc.identifier.citationMultimedia Tools and Applications (2022): 1-19en_US
dc.identifier.issn1380-7501 (print)en_US
dc.identifier.issn1573-7721 (online)en_US
dc.identifier.urihttp://hdl.handle.net/10486/704109
dc.descriptionThe version of record of this article, first published in Multimedia Tools and Applications , is available online at Publisher’s website: http://dx.doi.org/10.1007/s11042-022-13695-1en_US
dc.description.abstractIn this work we explore enhancing performance of reinforcement learning algorithms in video game environments by feeding it better, more relevant data. For this purpose, we use semantic segmentation to transform the images that would be used as input for the reinforcement learning algorithm from their original domain to a simplified semantic domain with just silhouettes and class labels instead of textures and colors, and then we train the reinforcement learning algorithm with these simplified images. We have conducted different experiments to study multiple aspects: feasibility of our proposal, and potential benefits to model generalization and transfer learning. Experiments have been performed with the Super Mario Bros video game as the testing environment. Our results show multiple advantages for this method. First, it proves that using semantic segmentation enables reaching higher performance than the baseline reinforcement learning algorithm without modifying the actual algorithm, and in fewer episodes; second, it shows noticeable performance improvements when training on multiple levels at the same time; and finally, it allows to apply transfer learning for models trained on visually different environments. We conclude that using semantic segmentation can certainly help reinforcement learning algorithms that work with visual data, by refining it. Our results also suggest that other computer vision techniques may also be beneficial for data prepossessing. Models and code will be available on github upon acceptanceen_US
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work is part of the preliminary tasks related to the Harvesting Visual Data (HVD) project (PID2021- 125051OB-I00) funded by the Ministerio de Ciencia e Innovacin of the Spanish Governmenten_US
dc.format.extent19 pag.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoengen
dc.publisherSpringeren_US
dc.relation.ispartofMultimedia Tools and Applicationsen_US
dc.rights© The Author(s) 2022en_US
dc.subject.otherSemantic segmentationen_US
dc.subject.otherReinforcement learningen_US
dc.subject.otherDomain adaptationen_US
dc.subject.otherSynthetic dataen_US
dc.titleExploiting semantic segmentation to boost reinforcement learning in video game environmentsen_US
dc.typearticleen_US
dc.subject.ecienciaElectrónicaes_ES
dc.subject.ecienciaTelecomunicacioneses_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s11042-022-13695-1en_US
dc.identifier.doi10.1007/s11042-022-13695-1es_ES
dc.identifier.publicationfirstpage1es_ES
dc.identifier.publicationlastpage19es_ES
dc.relation.projectIDGobierno de España. PID2021-125051OB-I00es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccessen_US
dc.facultadUAMEscuela Politécnica Superiores_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record