Show simple item record

dc.contributor.authorMüller, Marvin
dc.contributor.authorHuang, Yen Lin
dc.contributor.authorVélez, Saül
dc.contributor.authorRamesh, Ramamoorthy
dc.contributor.authorFiebig, Manfred
dc.contributor.authorTrassin, Morgan
dc.contributor.otherUAM. Departamento de Física de la Materia Condensadaes_ES
dc.date.accessioned2022-09-26T11:04:27Z
dc.date.available2022-09-26T11:04:27Z
dc.date.issued2021-10-04
dc.identifier.citationAdvanced Materials 33.52 (2021): 2104688es_ES
dc.identifier.issn0935-9648 (print)es_ES
dc.identifier.issn1521-4095 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/704259
dc.description.abstractThe functionalities of BiFeO3-based magnetoelectric multiferroic heterostructures rely on the controlled manipulation of their ferroelectric domains and of the corresponding net in-plane polarization, as this aspect guides the voltage-controlled magnetic switching. Chemical substitution has emerged as a key to push the energy dissipation of the BiFeO3 into the attojoule range but appears to result in a disordered domain configuration. Using non-invasive optical second-harmonic generation on heavily La-substituted BiFeO3 films, it is shown that a weak net in-plane polarization remains imprinted in the pristine films despite the apparent domain disorder. It is found that this ingrained net in-plane polarization can be trained with out-of-plane electric fields compatible with applications. Operando studies on capacitor heterostructures treated in this way show the full restoration of the domain configuration of pristine BiFeO3 along with a giant net in-plane polarization enhancement. Thus, the experiments reveal a surprising robustness of the net in-plane polarization of BiFeO3 against chemical modification, an important criterion in ongoing attempts to integrate magnetoelectric materials into energy-efficient deviceses_ES
dc.format.extent7 pag.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.relation.ispartofAdvanced Materialses_ES
dc.rights© 2021 The Authorses_ES
dc.subject.otherAdvanced Materialses_ES
dc.subject.otherBiFeO 3es_ES
dc.subject.otherDomain Configurationses_ES
dc.subject.otherIn-Plane Polarizationes_ES
dc.subject.otherMagneto-Electric Multiferroices_ES
dc.subject.otherMagnetoelectricses_ES
dc.subject.otherMultiferroic Heterostructurees_ES
dc.subject.otherMultiferroicses_ES
dc.subject.otherOperandoes_ES
dc.subject.otherOptical Second Harmonic Generationes_ES
dc.titleTraining the polarization in integrated La0.15Bi0.85FeO3-based deviceses_ES
dc.typearticlees_ES
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttps://doi.org/10.1002/adma.202104688es_ES
dc.identifier.doi10.1002/adma.202104688es_ES
dc.identifier.publicationfirstpage2104688-1es_ES
dc.identifier.publicationissue52es_ES
dc.identifier.publicationlastpage2104688-7es_ES
dc.identifier.publicationvolume33es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/694955/ERC//INSEETOes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccesses_ES
dc.facultadUAMFacultad de Cienciases_ES
dc.institutoUAMCentro de Investigación en Física de la Materia Condensada (IFIMAC)es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record