dc.contributor.author | Donini, Andrea | |
dc.contributor.author | Hernández, Pilar | |
dc.contributor.author | Pena Ruano, Carlos Roberto | |
dc.contributor.author | Romero-López, Fernando | |
dc.contributor.other | UAM. Departamento de Física Teórica | es_ES |
dc.date.accessioned | 2022-09-28T11:34:25Z | |
dc.date.available | 2022-09-28T11:34:25Z | |
dc.date.issued | 2020-07-18 | |
dc.identifier.citation | European Physical Journal C 80.7 (2020): 638 | es_ES |
dc.identifier.issn | 1434-6044 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10486/704308 | |
dc.description.abstract | We study the scaling of kaon decay amplitudes with the number of colours, Nc, in a theory with four degenerate flavours, Nf= 4. In this scenario, two current-current operators, Q±, mediate Δ S= 1 transitions, such as the two isospin amplitudes of non-leptonic kaon decays for K→ (ππ) I=,2, A and A2. In particular, we concentrate on the simpler K→ π amplitudes, A±, mediated by these two operators. A diagrammatic analysis of the large-Nc scaling of these observables is presented, which demonstrates the anticorrelation of the leading O(1 / Nc) and O(Nf/Nc2) corrections in both amplitudes. Using our new Nf= 4 and previous quenched data, we confirm this expectation and show that these corrections are naturally large and may be at the origin of the Δ I= 1 / 2 rule. The evidence for the latter is indirect, based on the matching of the amplitudes to their prediction in Chiral Perturbation Theory, from which the LO low-energy couplings of the chiral weak Hamiltonian, g±, can be determined. A NLO estimate of the K→ (ππ) I=,2 isospin amplitudes can then be derived, which is in good agreement with the experimental value | es_ES |
dc.format.extent | 12 pag. | es_ES |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | SpringerOpen | es_ES |
dc.relation.ispartof | European Physical Journal, Section C: Particles and Fields | es_ES |
dc.rights | © 2020, The Author(s) | es_ES |
dc.subject.other | Lattice QCD | es_ES |
dc.subject.other | Meson | es_ES |
dc.subject.other | Quantum Chromodynamics | es_ES |
dc.title | Dissecting the ΔI = 1/2 rule at large Nc | es_ES |
dc.type | article | es_ES |
dc.subject.eciencia | Física | es_ES |
dc.relation.publisherversion | https://doi.org/10.1140/epjc/s10052-020-8192-3 | es_ES |
dc.identifier.doi | 10.1140/epjc/s10052-020-8192-3 | es_ES |
dc.identifier.publicationfirstpage | 638-1 | es_ES |
dc.identifier.publicationissue | 7 | es_ES |
dc.identifier.publicationlastpage | 638-12 | es_ES |
dc.identifier.publicationvolume | 80 | es_ES |
dc.relation.projectID | Gobierno de España. FPA2015-68541-P | es_ES |
dc.relation.projectID | Gobierno de España. FPA2017-85985-P | es_ES |
dc.relation.projectID | Gobierno de España. PGC2018-094857-B-I00 | es_ES |
dc.relation.projectID | Gobierno de España. SEV-2016-0597 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/813942/EU//EuroPLEx | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/674896/EU//ELUSIVES | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/690575/EU//InvisiblesPlus | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/824093/EU//STRONG-2020 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/713673/EU//INPhINIT | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.rights.cc | Reconocimiento | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.facultadUAM | Facultad de Ciencias | es_ES |
dc.institutoUAM | Instituto de Física Teórica (IFT) | es_ES |