Show simple item record

dc.contributor.authorDesjonquères, Camille
dc.contributor.authorVillén Pérez, Sara
dc.contributor.authorDe Marco, Paulo
dc.contributor.authorMárquez, Rafael
dc.contributor.authorBeltrán, Juan F.
dc.contributor.authorLlusia Genique, Diego 
dc.contributor.otherUAM. Departamento de Ecologíaes_ES
dc.date.accessioned2022-09-30T10:10:56Z
dc.date.available2022-09-30T10:10:56Z
dc.date.issued2022-07-13
dc.identifier.citationMethods in Ecology and Evolution (2022): 1-14en_US
dc.identifier.issn2041-210X (online)en_US
dc.identifier.urihttp://hdl.handle.net/10486/704311
dc.description.abstractSpecies distribution models (SDMs) are a key tool for biogeography and climate change research, although current approaches have some significant drawbacks. The use of species occurrence constrains predictions of correlative models, while there is a general lack of eco-physiological data to develop mechanistic models. Passive acoustic monitoring is an emerging technique in ecology that may help to overcome these limitations. By remotely tracking animal behaviour across species geographical ranges, researchers can estimate the climatic breadth of species activity and provide a baseline for refined predictive models. However, such integrative approach still remains to be developed. Here, we propose the following: (a) a general and transferable method to build acoustic SDMs, a novel tool combining acoustic and biogeographical information, (b) a detailed comparison with standard correlative and mechanistic models, (c) a step-by-step guide to develop aSDMs and (d) a study case to assess their effectiveness and illustrate model outputs, using a year-round monitoring of calling behaviour of the Iberian tree frog at the thermal extremes of its distribution range. This method aims at forecasting changes in environmental suitability for acoustic communication, a key and climate-dependent behaviour for a wide variety of animal taxa. aSDMs identified strong associations between calling behaviour and local environmental conditions and showed robust and consistent predictive performance using two alternative models (regression and boundary). Furthermore, these models better captured climatic variation than correlative models as they use observations at higher temporal resolution. These results support aSDMs as efficient tools to model calling behaviour under future climate scenarios. The proposed approach offers a promising basis to explore the capacity of vocal species to deal with climate change, supported by an innovative integration of two disciplines: bioacoustics and biogeography. aSMDs are grounded on ecologically realistic conditions and provide spatially and temporally explicit predictions on calling behaviour, with direct implications in reproduction and survival. This enables to precisely forecast shifts in breeding phenology, geographic distribution or species persistence. Our study demonstrates how acoustic monitoring may represent an increasingly valuable tool for climate change researchen_US
dc.description.sponsorshipConsejería de Educación e Investigación, Grant/Award Number: 2020-T1/AMB20636 and 2017-T2/AMB-6035; European Commission, Grant/Award Number: EAVESTROP-661408; Ministerio de Economía, Industria y Competitividad, Grant/Award Number: CGL2017-88764-Res_ES
dc.format.extent14 pag.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoengen
dc.publisherWileyen_US
dc.relation.ispartofMethods in Ecology and Evolutionen_US
dc.rights© 2022 The Authorsen_US
dc.subject.otheranimal behaviouren_US
dc.subject.otherbioacousticsen_US
dc.subject.otherbiogeographyen_US
dc.subject.otherclimate changeen_US
dc.subject.otherecoacousticsen_US
dc.subject.otherecological nicheen_US
dc.subject.otherenvironmental suitabilityen_US
dc.subject.otherpassive acoustic monitoringen_US
dc.titleAcoustic species distribution models (aSDMs): A framework to forecast shifts in calling behaviour under climate changeen_US
dc.typearticleen_US
dc.subject.ecienciaMedio Ambientees_ES
dc.relation.publisherversionhttps://doi.org/10.1111/2041-210X.13923en_US
dc.identifier.doi10.1111/2041-210X.13923
dc.identifier.publicationfirstpage1es_ES
dc.identifier.publicationlastpage14es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/661408en_US
dc.relation.projectIDGobierno de España. CGL2017-88764-Res_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US
dc.rights.ccReconocimiento – NoComercial – SinObraDerivadaes_ES
dc.rights.accessRightsopenAccessen_US
dc.facultadUAMFacultad de Cienciases_ES
dc.institutoUAMCentro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM)es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record