Mass classification of dark matter perturbers of stellar tidal streams
Entidad
UAM. Departamento de Física TeóricaEditor
ElsevierFecha de edición
2022-01-30Cita
10.1016/j.dark.2022.100978
Physics of the Dark Universe 35 (2022): 100978
ISSN
2212-6864 (online)DOI
10.1016/j.dark.2022.100978Proyecto
Gobierno de España. PGC2018-094773-B-C32; Gobierno de España. SEV-2016-0597Versión del editor
https://doi.org/10.1016/j.dark.2022.100978Materias
Cosmology: Dark Matter; Galaxy: Evolution; Galaxy: Halo-Galaxy: Kinematics and Dynamics; Galaxy: structure; FísicaDerechos
© 2022 Elsevier B.V.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Resumen
Stellar streams formed by tidal stripping of progenitors orbiting around the Milky Way are expected to be perturbed by encounters with dark matter subhalos. Recent studies have shown that they are an excellent proxy to infer properties of the perturbers, such as their mass. Here we present two different methodologies that make use of the fully non-Gaussian density distribution of stellar streams: a Bayesian model selection based on the probability density function (PDF) of stellar density, and a likelihood-free gradient boosting classifier. While the schemes do not assume a specific dark matter model, we are mainly interested in discerning the primordial black holes cold dark matter (PBH CDM) hypothesis form the standard particle dark matter one. Therefore, as an application we forecast model selection strength of evidence for cold dark matter clusters of masses 103–105M⊙ and 105–109M⊙, based on a GD-1-like stellar stream and including realistic observational errors. Evidence for the smaller mass range, so far under-explored, is particularly interesting for PBH CDM. We expect weak to strong evidence for model selection based on the PDF analysis, depending on the fiducial model. Instead, the gradient boosting model is a highly efficient classifier (99% accuracy) for all mass ranges here considered. As a further test of the robustness of the method, we reach similar conclusions when performing forecasts further dividing the largest mass range into 105–107M⊙ and 107–109M⊙ ranges
Lista de ficheros
Google Scholar:Montanari, Francesco
-
García-Bellido Capdevila, Juan
Lista de colecciones del ítem
Registros relacionados
Mostrando ítems relacionados por título, autor, creador y materia.
-
Modelling the Tucana III stream - a close passage with the LMC
Erkal, D.; Li, T. S.; Koposov, S. E.; Belokurov, V.; Balbinot, E.; Bechtol, K.; Buncher, B.; Drlica-Wagner, A.; Kuehn, K.; Marshall, J. L.; Martínez-Vázquez, C. E.; Pace, A. B.; Shipp, N.; Simon, J. D.; Stringer, K. M.; Vivas, A. K.; Wechsler, R. H.; Yanny, B.; Abdalla, F. B.; Allam, S.; Annis, J.; Ávila, S.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; De Vicente, J.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Frieman, J.; García-Bellido Capdevila, Juan; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Hollowood, D. L.; Honscheid, K.; James, D. J.; Krause, E.; Maia, M. A.G.; March, M.; Menanteau, F.; Miquel, R.; Ogando, R. L.C.; Plazas, A. A.; Sánchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E.C.; Tarle, G.; Tucker, D. L.; Walker, A. R.
2018-09-14