UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

DeepFakes Detection Based on Heart Rate Estimation: Single- and Multi-frame

Author
Hernández Ortega, Javieruntranslated; Tolosana Moranchel, Rubénuntranslated; Fiérrez Aguilar, Juliánuntranslated; Morales Moreno, Aythamiuntranslated
Entity
UAM. Departamento de Tecnología Electrónica y de las Comunicaciones
Publisher
Springer Nature
Date
2022-01-31
Citation
10.1007/978-3-030-87664-7_12
Hernandez-Ortega, J., Tolosana, R., Fierrez, J., Morales, A. (2022). DeepFakes Detection Based on Heart Rate Estimation: Single- and Multi-frame. In: Rathgeb, C., Tolosana, R., Vera-Rodriguez, R., Busch, C. (eds) Handbook of Digital Face Manipulation and Detection. Advances in Computer Vision and Pattern Recognition. Springer. Pp. 257-273
 
 
 
ISBN
9783030876630 (print); 9783030876647 (online)
DOI
10.1007/978-3-030-87664-7_12
Funded by
This work has been supported by projects: PRIMA (H2020-MSCA-ITN2019-860315), TRESPASS-ETN (H2020-MSCA-ITN-2019-860813), BIBECA (MINECO/FEDER RTI2018-101248-B-I00), and COST CA16101 (MULTI-FORESEE). J. H.-O. is supported by a PhD fellowship from UAM
Project
info:eu-repo/grantAgreement/EC/H2020/860315/EU//PriMa-ITN; info:eu-repo/grantAgreement/EC/H2020/860813/EU//TReSPAsS-ETN; Gobierno de España. RTI2018-101248-B-I00
Editor's Version
https://doi.org/10.1007/978-3-030-87664-7_12
Subjects
Telecomunicaciones
URI
http://hdl.handle.net/10486/704882
Rights
© The author(s)

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

This chapter describes a DeepFake detection framework based on physiological measurement. In particular, we consider information related to the heart rate using remote photoplethysmography (rPPG). rPPG methods analyze video sequences looking for subtle color changes in the human skin, revealing the presence of human blood under the tissues. This chapter explores to what extent rPPG is useful for the detection of DeepFake videos. We analyze the recent fake detector named DeepFakesON-Phys that is based on a Convolutional Attention Network (CAN), which extracts spatial and temporal information from video frames, analyzing and combining both sources to better detect fake videos. DeepFakesON-Phys has been experimentally evaluated using the latest public databases in the field: Celeb-DF v2 and DFDC. The results achieved for DeepFake detection based on a single frame are over 98% AUC (Area Under the Curve) on both databases, proving the success of fake detectors based on physiological measurement to detect the latest DeepFake videos. In this chapter, we also propose and study heuristical and statistical approaches for performing continuous DeepFake detection by combining scores from consecutive frames with low latency and high accuracy (100% on the Celeb-DF v2 evaluation dataset). We show that combining scores extracted from short-time video sequences can improve the discrimination power of DeepFakesON-Phys
Show full item record

Files in this item

Thumbnail
Name
deepfakes_hernandez_handbook_2021.pdf
Size
378.1Kb
Format
PDF

Refworks Export

Google™ Scholar:Hernández Ortega, Javier - Tolosana Moranchel, Rubén - Fiérrez Aguilar, Julián - Morales Moreno, Aythami

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16817]

Related items

Showing items related by title, author, creator and subject.

  • Deepfakes and beyond: A Survey of face manipulation and fake detection 

    Tolosana Moranchel, RubénAutoridad UAM; Vera Rodríguez, RubénAutoridad UAM; Fiérrez Aguilar, JuliánAutoridad UAM; Morales Moreno, AythamiAutoridad UAM; Ortega García, JavierAutoridad UAM
    2020-12-01
  • MEBAL: A multimodal database for eye blink detection and attention level estimation 

    Daza García, RobertoAutoridad UAM; Morales Moreno, AythamiAutoridad UAM; Fiérrez Aguilar, JuliánAutoridad UAM; Tolosana Moranchel, RubénAutoridad UAM
    2020-10-25
  • SVC-onGoing: Signature verification competition 

    Tolosana Moranchel, RubénAutoridad UAM; Vera Rodríguez, RubénAutoridad UAM; Gonzalez-Garcia, Carlos; Fiérrez Aguilar, JuliánAutoridad UAM; Morales Moreno, AythamiAutoridad UAM; Ortega García, JavierAutoridad UAM; Carlos Ruiz-Garcia, Juan; Romero-Tapiador, Sergio; Rengifo, Santiago; Caruana, Miguel; Jiang, Jiajia; Lai, Songxuan; Jin, Lianwen; Zhu, Yecheng; Galbally, Javier; Diaz, Moises; Angel Ferrer, Miguel; Gomez-Barrero, Marta; Hodashinsky, Ilya; Sarin, Konstantin; Slezkin, Artem; Bardamova, Marina; Svetlakov, Mikhail; Saleem, Mohammad; Lia Szcs, Cintia; Kovari, Bence; Pulsmeyer, Falk; Wehbi, Mohamad; Zanca, Dario; Ahmad, Sumaiya; Mishra, Sarthak; Jabin, Suraiya
    2022-02-24
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad