DeepFakes Detection Based on Heart Rate Estimation: Single- and Multi-frame
Entity
UAM. Departamento de Tecnología Electrónica y de las ComunicacionesPublisher
Springer NatureDate
2022-01-31Citation
10.1007/978-3-030-87664-7_12
Hernandez-Ortega, J., Tolosana, R., Fierrez, J., Morales, A. (2022). DeepFakes Detection Based on Heart Rate Estimation: Single- and Multi-frame. In: Rathgeb, C., Tolosana, R., Vera-Rodriguez, R., Busch, C. (eds) Handbook of Digital Face Manipulation and Detection. Advances in Computer Vision and Pattern Recognition. Springer. Pp. 257-273
ISBN
9783030876630 (print); 9783030876647 (online)DOI
10.1007/978-3-030-87664-7_12Funded by
This work has been supported by projects: PRIMA (H2020-MSCA-ITN2019-860315), TRESPASS-ETN (H2020-MSCA-ITN-2019-860813), BIBECA (MINECO/FEDER RTI2018-101248-B-I00), and COST CA16101 (MULTI-FORESEE). J. H.-O. is supported by a PhD fellowship from UAMProject
info:eu-repo/grantAgreement/EC/H2020/860315/EU//PriMa-ITN; info:eu-repo/grantAgreement/EC/H2020/860813/EU//TReSPAsS-ETN; Gobierno de España. RTI2018-101248-B-I00Editor's Version
https://doi.org/10.1007/978-3-030-87664-7_12Subjects
TelecomunicacionesRights
© The author(s)Abstract
This chapter describes a DeepFake detection framework based on physiological measurement. In particular, we consider information related to the heart rate using remote photoplethysmography (rPPG). rPPG methods analyze video sequences looking for subtle color changes in the human skin, revealing the presence of human blood under the tissues. This chapter explores to what extent rPPG is useful for the detection of DeepFake videos. We analyze the recent fake detector named DeepFakesON-Phys that is based on a Convolutional Attention Network (CAN), which extracts spatial and temporal information from video frames, analyzing and combining both sources to better detect fake videos. DeepFakesON-Phys has been experimentally evaluated using the latest public databases in the field: Celeb-DF v2 and DFDC. The results achieved for DeepFake detection based on a single frame are over 98% AUC (Area Under the Curve) on both databases, proving the success of fake detectors based on physiological measurement to detect the latest DeepFake videos. In this chapter, we also propose and study heuristical and statistical approaches for performing continuous DeepFake detection by combining scores from consecutive frames with low latency and high accuracy (100% on the Celeb-DF v2 evaluation dataset). We show that combining scores extracted from short-time video sequences can improve the discrimination power of DeepFakesON-Phys
Files in this item
Google Scholar:Hernández Ortega, Javier
-
Tolosana Moranchel, Rubén
-
Fiérrez Aguilar, Julián
-
Morales Moreno, Aythami
This item appears in the following Collection(s)
Related items
Showing items related by title, author, creator and subject.
-
SVC-onGoing: Signature verification competition
Tolosana Moranchel, Rubén; Vera Rodríguez, Rubén
; Gonzalez-Garcia, Carlos; Fiérrez Aguilar, Julián
; Morales Moreno, Aythami
; Ortega García, Javier
; Carlos Ruiz-Garcia, Juan; Romero-Tapiador, Sergio; Rengifo, Santiago; Caruana, Miguel; Jiang, Jiajia; Lai, Songxuan; Jin, Lianwen; Zhu, Yecheng; Galbally, Javier; Diaz, Moises; Angel Ferrer, Miguel; Gomez-Barrero, Marta; Hodashinsky, Ilya; Sarin, Konstantin; Slezkin, Artem; Bardamova, Marina; Svetlakov, Mikhail; Saleem, Mohammad; Lia Szcs, Cintia; Kovari, Bence; Pulsmeyer, Falk; Wehbi, Mohamad; Zanca, Dario; Ahmad, Sumaiya; Mishra, Sarthak; Jabin, Suraiya
2022-02-24