Show simple item record

dc.contributor.authorAndrade, Tomas
dc.contributor.authorBaggioli, Matteo
dc.contributor.authorKrikun, Alexander
dc.contributor.otherUAM. Departamento de Física Teóricaes_ES
dc.date.accessioned2022-11-02T11:08:05Z
dc.date.available2022-11-02T11:08:05Z
dc.date.issued2021-03-31
dc.identifier.citationJournal of High Energy Physics 3 (2021): 292es_ES
dc.identifier.issn1126-6708 (print)es_ES
dc.identifier.issn1029-8479 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/704885
dc.description.abstractWe study the dynamics of spontaneous translation symmetry breaking in holographic models in presence of weak explicit sources. We show that, unlike conventional gapped quantum charge density wave systems, this dynamics is well characterized by the effective time dependent Ginzburg-Landau equation, both above and below the critical temperature, which leads to a “gapless” algebraic pattern of metal-insulator phase transition. In this framework we elucidate the nature of the damped Goldstone mode (the phason), which has earlier been identified in the effective hydrodynamic theory of pinned charge density wave and observed in holographic homogeneous lattice models. We follow the motion of the quasinormal modes across the dynamical phase transition in models with either periodic inhomogeneous or helical homogeneous spatial structures, showing that the phase relaxation rate is continuous at the critical temperature. Moreover, we find that the qualitative low-energy dynamics of the broken phase is universal, insensitive to the precise pattern of translation symmetry breaking, and therefore applies to homogeneous models as welles_ES
dc.format.extent40 pag.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.ispartofJournal of High Energy Physicses_ES
dc.rights© 2021, The Author(s)es_ES
dc.subject.otherGravitation; Ads/Cftes_ES
dc.subject.otherHolographyes_ES
dc.titlePhase relaxation and pattern formation in holographic gapless charge density waveses_ES
dc.typearticlees_ES
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttps://doi.org/10.1007/JHEP03(2021)292es_ES
dc.identifier.doi10.1007/JHEP03(2021)292es_ES
dc.identifier.publicationfirstpage292-1es_ES
dc.identifier.publicationissue3es_ES
dc.identifier.publicationlastpage292-40es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/692951/EU//GravBHses_ES
dc.relation.projectIDGobierno de España. SEV-2012-0249es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccesses_ES
dc.facultadUAMFacultad de Cienciases_ES
dc.institutoUAMInstituto de Física Teórica (IFT)es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record