Show simple item record

dc.contributor.authorVito Walter, Anellies_ES
dc.contributor.authorBellogin Kouki, Alejandro es_ES
dc.contributor.authorFerrara, Antonioes_ES
dc.contributor.authorMalitesta, Danielees_ES
dc.contributor.authorMerra, Felice Antonioes_ES
dc.contributor.authorPomo, Claudioes_ES
dc.contributor.authorDonini, Francesco Mariaes_ES
dc.contributor.authorSciascio, Eugenio Dies_ES
dc.contributor.authorNoia, Tommaso Dies_ES
dc.contributor.otherUAM. Departamento de Ingeniería Informáticaes_ES
dc.date.accessioned2022-11-04T14:53:53Zen_US
dc.date.available2022-11-04T14:53:53Zen_US
dc.date.issued2021-10-05en_US
dc.identifier.citationHow to Perform Reproducible Experiments in the ELLIOT Recommendation Framework: Data Processing, Model Selection, and Performance Evaluation Discussion Paper IRR (2021)en_US
dc.identifier.urihttp://hdl.handle.net/10486/704999en_US
dc.description.abstractRecommender Systems have shown to be an efective way to alleviate the over-choice problem and provide accurate and tailored recommendations. However, the impressive number of proposed recommendation algorithms, splitting strategies, evaluation protocols, metrics, and tasks, has made rigorous experimental evaluation particularly challenging. ELLIOT is a comprehensive recommendation framework that aims to run and reproduce an entire experimental pipeline by processing a simple confguration fle. The framework loads, flters, and splits the data considering a vast set of strategies. Then, it optimizes hyperparameters for several recommendation algorithms, selects the best models, compares them with the baselines, computes metrics spanning from accuracy to beyond-accuracy, bias, and fairness, and conducts statistical analysis. The aim is to provide researchers a tool to ease all the experimental evaluation phases (and make them reproducible), from data reading to results collection. ELLIOT is freely available on GitHub at https://github.com/sisinflab/ellioten_US
dc.format.extent9 pag.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoengen_US
dc.publisherCEURen_US
dc.relation.ispartofItalian Information Retrieval Workshopen_US
dc.rights© The author(s)en_US
dc.subject.otherRecommender Systemses_ES
dc.subject.otherReproducibilityen_US
dc.subject.otherAdversarial Learningen_US
dc.subject.otherVisual Recommendersen_US
dc.subject.otherKnowledge Graphsen_US
dc.titleHow to Perform Reproducible Experiments in the ELLIOT Recommendation Framework: Data Processing, Model Selection, and Performance Evaluationen_US
dc.typearticleen_US
dc.subject.ecienciaInformáticaes_ES
dc.identifier.publicationfirstpage1es_ES
dc.identifier.publicationlastpage9es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccessen_US
dc.facultadUAMEscuela Politécnica Superiores_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record