Mañana, JUEVES, 24 DE ABRIL, el sistema se apagará debido a tareas habituales de mantenimiento a partir de las 9 de la mañana. Lamentamos las molestias.

Show simple item record

dc.contributor.authorPisarra, Michele 
dc.contributor.authorDíaz Oliva, Cristina 
dc.contributor.authorMartín García, Fernando 
dc.contributor.otherUAM. Departamento de Químicaes_ES
dc.date.accessioned2022-11-07T09:08:19Z
dc.date.available2022-11-07T09:08:19Z
dc.date.issued2021-05-13
dc.identifier.citationPhysical Review B 103.19 (2021): 195416es_ES
dc.identifier.issn1098-0121 (print)es_ES
dc.identifier.issn1550-235X (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/705036
dc.description.abstractComputational physics and chemistry are called to play a very important role in the development of new technologies based on two-dimensional (2D) materials, reducing drastically the number of trial and error experiments needed to obtain meaningful advances in the field. Here, we present a thorough theoretical study of the structural and electronic properties of the single-layer, double-layer, and bulk transition metal dichalcogenides MoS2, MoSe2, MoTe2, WS2, WSe2, and WTe2 in the 2H phase, for which only partial experimental information is available. We show that the properties of these systems depend strongly on the density functional theory approach used in the calculations and that inclusion of weak dispersion forces is mandatory for a correct reproduction of the existing experimental data. By using the most accurate functionals, we predict interlayer separations, direct and indirect band gaps, and spin-orbit splittings in those systems for which there is no experimental information available. We also discuss the variation of these properties with the specific chalcogen and transition metal atomes_ES
dc.format.extent22 pag.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.relation.ispartofPhysical Review B: Condensed Matter and Materials Physicses_ES
dc.rights. © 2021 American Physical Societyes_ES
dc.subject.otherComputational Physicses_ES
dc.subject.otherIndirect Band Gapes_ES
dc.subject.otherInterlayer Separationes_ES
dc.subject.otherSpin-Orbit Splittingses_ES
dc.subject.otherStructural and Electronic Propertieses_ES
dc.subject.otherTransition Metal Atomses_ES
dc.subject.otherTransition Metal Dichalcogenideses_ES
dc.titleTheoretical study of structural and electronic properties of 2H-phase transition metal dichalcogenideses_ES
dc.typearticlees_ES
dc.subject.ecienciaFísicaes_ES
dc.relation.publisherversionhttps://doi.org/10.1103/PhysRevB.103.195416es_ES
dc.identifier.doi10.1103/PhysRevB.103.195416es_ES
dc.identifier.publicationfirstpage195416-1es_ES
dc.identifier.publicationissue19es_ES
dc.identifier.publicationlastpage195416-22es_ES
dc.identifier.publicationvolume103es_ES
dc.relation.projectIDGobierno de España. PID2019-105458RB-I00es_ES
dc.relation.projectIDGobierno de España. PID2019-106732GB-I00es_ES
dc.relation.projectIDGobierno de España. SEV-2016-0686es_ES
dc.relation.projectIDGobierno de España. CEX2018-000805-Mes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.accessRightsopenAccesses_ES
dc.facultadUAMFacultad de Cienciases_ES
dc.institutoUAMCentro de Investigación en Física de la Materia Condensada (IFIMAC)es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record