UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

A note on quasilinear equations with fractional diffusion

Author
Abdellaoui, Boumediene; Ochoa, Pablo; Peral Alonso, Ireneountranslated
Entity
UAM. Departamento de Matemáticas
Publisher
AIMS Press
Date
2021-07-06
Citation
10.3934/mine.2021018
Mathematics In Engineering 3.2 (2021): 1–28
 
 
 
ISSN
2640-3501 (online)
DOI
10.3934/mine.2021018
Editor's Version
https://doi.org/10.3934/mine.2021018
Subjects
Fractional Diffusion; Nonlinear Gradient Terms; Viscosity Solutions; Matemáticas
URI
http://hdl.handle.net/10486/705321
Rights
© 2021 the Author(s), licensee AIMS Press

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

In this paper, we study the existence of distributional solutions of the following non-local elliptic problem (equation presented). We are interested in the relation between the regularity of the source term f , and the regularity of the corresponding solution. If 1 < p < 2s, that is the natural growth, we are able to show the existence for all f ∈ L 1 (Ω). In the subcritical case, that is, for 1 < p < p∗ := N/(N − 2s + 1), we show that solutions are C 1,α for f ∈ L m , with m large enough. In the general case, we achieve the same result under a condition on the size of the source. As an application, we may show that for regular sources, distributional solutions are viscosity solutions, and conversely
Show full item record

Files in this item

Thumbnail
Name
8888724.pdf
Size
409.5Kb
Format
PDF

Refworks Export

Google™ Scholar:Abdellaoui, Boumediene - Ochoa, Pablo - Peral Alonso, Ireneo

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16630]

Related items

Showing items related by title, author, creator and subject.

  • Growing solutions of the fractional p-Laplacian equation in the Fast Diffusion range 

    Vázquez, Juan Luis
    2022-01-01
  • Semilinear problems for the fractional laplacian with a singular nonlinearity 

    Barrios, B.; De Bonis, I.; Medina, M.; Peral Alonso, IreneoAutoridad UAM
    2015-05-28
  • A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li-Fraumeni-like families 

    Calvete, Oriol; Martinez, Paula; García Pavía, PabloAutoridad UAM; Benitez-Buelga, Carlos; Paumard Hernández, Beatriz; Fernandez, Victoria; Dominguez, Fernando; Salas, Clara; Romero-Laorden, Nuria; Garcia-Donas, Jesus; Carrillo, Jaime; Perona, Rosario; Trivinõ, Juan Carlos; Andrés, Raquel; Cano, Juana Mariá; Rivera, Bárbara; Alonso-Pulpón, Luis A.; Setien, Fernando; Esteller, Manel; Rodriguez-Perales, Sandra; Bougeard, Gaelle; Frebourg, Tierry; Urioste, Miguel; Blasco, Maria A.; Benítez, Javier
    2015-09-25
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram