Show simple item record

dc.contributor.authorAbreu-Blaya, Ricardo
dc.contributor.authorBermudo, Sergio
dc.contributor.authorRodríguez, José M.
dc.contributor.authorTouris Lojo, Eva 
dc.contributor.otherUAM. Departamento de Matemáticases_ES
dc.date.accessioned2022-11-24T13:11:46Z
dc.date.available2022-11-24T13:11:46Z
dc.date.issued2021-02-09
dc.identifier.citationSymmetry 13.2 (2021): 292es_ES
dc.identifier.issn2073-8994 (online)es_ES
dc.identifier.urihttp://hdl.handle.net/10486/705366
dc.description.abstractWe obtain inequalities involving many topological indices in classical graph products by using the f-polynomial. In particular, we work with lexicographic product, Cartesian sum and Cartesian product, and with first Zagreb, forgotten, inverse degree and sum lordeg indiceses_ES
dc.format.extent20 pag.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofSymmetryes_ES
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerlandes_ES
dc.subject.otherFirst Zagreb Indexes_ES
dc.subject.otherForgotten Indexes_ES
dc.subject.otherInverse Degree Indexes_ES
dc.subject.otherSum Lordeg Indexes_ES
dc.subject.otherLexicographic Productes_ES
dc.subject.otherCartesian Sumes_ES
dc.subject.otherPolynomials in Graphses_ES
dc.subject.otherCartesian Productes_ES
dc.titleTopological indices and f-polynomials on some graph productses_ES
dc.typearticlees_ES
dc.subject.ecienciaMatemáticases_ES
dc.relation.publisherversionhttps://doi.org/10.3390/sym13020292es_ES
dc.identifier.doi10.3390/sym13020292es_ES
dc.identifier.publicationfirstpage292-1es_ES
dc.identifier.publicationissue2es_ES
dc.identifier.publicationlastpage292-20es_ES
dc.identifier.publicationvolume13es_ES
dc.relation.projectIDGobierno de España. PID2019-106433GB-I00es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccesses_ES
dc.facultadUAMFacultad de Cienciases_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record