UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Importance of immunometabolic markers for the classification of patients with major depressive disorder using machine learning

Author
Sánchez Carro, Yolandauntranslated; Torre Luque, Alejandro Francisco de launtranslated; Leal Leturia, Itziaruntranslated; Salvat Pujol, Neus; Massaneda, Clara; Arriba Arnau, Aida de; Urretavizcaya, Mikel; Pérez Solà, Victor; Toll, Alba; Martínez Ruiz, Antonio; Ferreirós Martínez, Raquel; Pérez, Salvador; Sastre, Juan; Álvarez, Pilar; Soria, Virginia; López García, María Pilaruntranslated
Entity
UAM. Departamento de Psiquiatría
Publisher
Elsevier
Date
2022-11-01
Citation
10.1016/j.pnpbp.2022.110674
Progress in Neuropsychopharmacology & Biological Psychiatry 121 (2023): 110674
 
 
 
ISSN
0278-5846
DOI
10.1016/j.pnpbp.2022.110674
Funded by
This study was supported in part by grants from the Carlos III Health Institute through the Ministry of Science, Innovation and Universities (PI15/00662, PI15/0039, PI15/00204, PI19/01040), co-funded by the European Regional Development Fund (ERDF) “A way to build Europe”, CIBERSAM, and the Catalan Agency for the Management of University and Research Grants (AGAUR 2017 SGR 1247). We also thank CERCA Programme/Generalitat de Catalunya for institutional support. Work partially supported by Biobank HUB-ICO-IDIBELL, integrated in the Spanish Biobank Network and funded by Instituto de Salud Carlos III (PT17/0015/0024) and by Xarxa Bancs de Tumors de Catalunya sponsored by Pla Director d’Oncologia de Catalunya (XBTC). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. YSC work is supported by the FPI predoctoral grant (FPI 2016/17) from Universidad Autonoma de Madrid. VS received an Intensification of the Research Activity Grant from the Instituto de Salud Carlos III (INT21/00055) during 2022
Project
Gobierno de España. PI15/00662; Gobierno de España. PI15/0039; Gobierno de España. PI15/00204,; Gobierno de España. PI19/01040
Editor's Version
https://doi.org/10.1016/j.pnpbp.2022.110674
Subjects
Inflammation; Lifestyle habits; Machine learning; Major depressive disorder; Metabolic syndrome; Oxidative stress; Medicina
URI
http://hdl.handle.net/10486/705412
Rights
© 2022 The Authors

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Abstract

Background: Although there is scientific evidence of the presence of immunometabolic alterations in major depression, not all patients present them. Recent studies point to the association between an inflammatory phenotype and certain clinical symptoms in patients with depression. The objective of our study was to classify major depression disorder patients using supervised learning algorithms or machine learning, based on immunometabolic and oxidative stress biomarkers and lifestyle habits. Methods: Taking into account a series of inflammatory and oxidative stress biomarkers (C-reactive protein (CRP), tumor necrosis factor (TNF), 4-hydroxynonenal (HNE) and glutathione), metabolic risk markers (blood pressure, waist circumference and glucose, triglyceride and cholesterol levels) and lifestyle habits of the participants (physical activity, smoking and alcohol consumption), a study was carried out using machine learning in a sample of 171 participants, 91 patients with depression (71.42% women, mean age = 50.64) and 80 healthy subjects (67.50% women, mean age = 49.12). The algorithm used was the support vector machine, performing cross validation, by which the subdivision of the sample in training (70%) and test (30%) was carried out in order to estimate the precision of the model. The prediction of belonging to the patient group (MDD patients versus control subjects), melancholic type (melancholic versus non-melancholic patients) or resistant depression group (treatment-resistant versus non-treatment-resistant) was based on the importance of each of the immunometabolic and lifestyle variables. Results: With the application of the algorithm, controls versus patients, such as patients with melancholic symptoms versus non-melancholic symptoms, and resistant versus non-resistant symptoms in the test phase were optimally classified. The variables that showed greater importance, according to the results of the area under the ROC curve, for the discrimination between healthy subjects and patients with depression were current alcohol consumption (AUC = 0.62), TNF-α levels (AUC = 0.61), glutathione redox status (AUC = 0.60) and the performance of both moderate (AUC = 0.59) and vigorous physical exercise (AUC = 0.58). On the other hand, the most important variables for classifying melancholic patients in relation to lifestyle habits were past (AUC = 0.65) and current (AUC = 0.60) tobacco habit, as well as walking routinely (AUC = 0.59) and in relation to immunometabolic markers were the levels of CRP (AUC = 0.62) and glucose (AUC = 0.58). In the analysis of the importance of the variables for the classification of treatment-resistant patients versus non-resistant patients, the systolic blood pressure (SBP) variable was shown to be the most relevant (AUC = 0.67). Other immunometabolic variables were also among the most important such as TNF-α (AUC = 0.65) and waist circumference (AUC = 0.64). In this case, sex (AUC = 0.59) was also relevant along with alcohol (AUC = 0.58) and tobacco (AUC = 0.56) consumption. Conclusions: The results obtained in our study show that it is possible to predict the diagnosis of depression and its clinical typology from immunometabolic markers and lifestyle habits, using machine learning techniques. The use of this type of methodology could facilitate the identification of patients at risk of presenting depression and could be very useful for managing clinical heterogeneity.
Show full item record

Files in this item

Thumbnail
Name
importance_sanchez_prog_neuropsychopharmacol_biol_psyshiatry_2022.pdf
Size
1.633Mb
Format
PDF
Description
Artículo

Refworks Export

Google™ Scholar:Sánchez Carro, Yolanda - Torre Luque, Alejandro Francisco de la - Leal Leturia, Itziar - Salvat Pujol, Neus - Massaneda, Clara - Arriba Arnau, Aida de - Urretavizcaya, Mikel - Pérez Solà, Victor - Toll, Alba - Martínez Ruiz, Antonio - Ferreirós Martínez, Raquel - Pérez, Salvador - Sastre, Juan - Álvarez, Pilar - Soria, Virginia - López García, María Pilar

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16522]

Related items

Showing items related by title, author, creator and subject.

  • Population-based multicase-control study in common tumors in Spain (MCC-Spain): Rationale and study design 

    Castaño-Vinyals, Gemma; Aragonés, Nuria; Pérez-Gómez, Beatriz; Martín, Vicente; Llorca, Javier; Moreno, Víctor; Altzibar, Jone M.; Ardanaz, Eva; De Sanjosé, Sílvia; Jiménez-Moleón, José J.; Tardón, Adonina; Alguacil, Juan; Peiró, Rosana; Marcos-Gragera, Rafael; Navarro, Carmen; Pollán Santamaría, Marina AnunciaciónAutoridad UAM; Kogevinas, Manolis; Alonso, Maria Teresa; Amiano, Pilar; Arias, Cristina; Azpiri, Mikel; Benavente, Yolanda; Boldo, Elena; Bueno, Aurora; Bustamante, Mariona; Caballero, Francisco Javier; Campo, Elías; Cantón, Rafael; Capelo, Rocío; Carmona, Carme; Casabonne, Delphine; Chirlaque, María Dolores; Cirac, Judith; Clofent, Juan; Colado, Enrique; Costas, Laura; Crous, Marta; Campo, Rosa del; Díaz Santos, Marian; Dierssen-Sotos, Trinidad; Ederra, María; Espinosa, Ana; Fernández Cabrera, Marieta; Fernández Somoano, Ana; Fernández Villa, Tania; García García-Esquinas, EstherAutoridad UAM; García Martín, Paloma; Gómez-Acebo, Inés; Puga, Cristina González; Gràcia, Esther; Eslava, Marcela Guevara; Guinó, Elisabet; Huerta, José María; Lope, Virginia; López-Abente, Gonzalo; López-Otín, Carlos; Martínez Argüelles, Begoña; Merino Salas, Sergio; Mirón Pozo, Benito; Molina dee La Torre, Antonio José; Moreno, Eduardo; Moreno Iribas, Concepción; Olea, Nicolás; Gelis, Gemma Osca; Paré, Laia; Porta, Miquel; Puig, Montse; Rivad del Fresno, Manuel; Robles, Claudia; Rodríguez Suarez, Marta María; Romero, Beatriz; Sáez Castillo, Ana Isabel; Sala Serra, Maria
    2015-01-01
  • Efficacy of prospective pharmacogenetic testing in the treatment of major depressive disorder: Results of a randomized, double-blind clinical trial 

    Pérez, Víctor; Salavert, Ariana; Espadaler, Jordi; Tuson, Miquel; Saiz-Ruiz, Jerónimo; Sáez-Navarro, Cristina; Bobes, Julio; Baca García, EnriqueAutoridad UAM; Vieta, Eduard; Olivares, José M.; Rodriguez-Jiménez, Roberto; Villagrán, José M.; Gascón, Josep; Cañete-Crespillo, Josep; Solé, Montse; Saiz, Pilar A.; Ibáñez, Ángela; Diego-Adeliño, Javier de; AB-GEN Collaborative Group; Menchón, José M.
    2017-07-14
  • Pediatric parenteral nutrition: Clinical practice guidelines from the Spanish Society of Parenteral and Enteral Nutrition (SENPE), the Spanish Society of Pediatric Gastroenterology, Hepatology and Nutrition (SEGHNP) and the Spanish Society of Hospital Pharmacy (SEFH) 

    Pedrón, Consuelo; Cuervas-Mons Vendrell, Margarita; Galera Martínez, Rafael; Gómez López, Lilianne; Gomis Muñoz, Pilar; Irastorza Terradillos, Iñaki; Martínez Costa, Cecilia; Moreno Villares, José Manuel; Pérez-Portabella Maristany, Cleofé; Pozas del Río, M. Teresa; Redecillas Ferreiro, Susana E.; Prieto Bozano, Gerardo; Balmaseda Serrano, Elena; Cañedo Villarroya, Elvira; Gutiérrez Junquera, CarolinaAutoridad UAM; Morais López, Ana; Meavilla Olivas, Silvia; Navas López, Víctor Manuel; Rubio Murillo, María; Vives Piñera, Inmaculada; Vidal Casariego, Alfonso; Cuerda Compés, Cristina de la; Matía Martín, Pilar; Frías Soriano, Laura; Ruiz López, M. Dolores; Vaquerizo Alonso, Clara
    2017-01-01
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram