UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Universal L−3 finite-size effects in the viscoelasticity of amorphous systems

Author
Phillips, Anthony E.; Baggioli, Matteo; Sirk, Timothy W.; Trachenko, Kostya; Zaccone, Alessio
Entity
UAM. Departamento de Física Teórica
Publisher
American Physical Society
Date
2021-03-05
Citation
10.1103/PhysRevMaterials.5.035602
Physical Review Materials 5.3 (2021): 035602
 
 
 
ISSN
2475-9953
DOI
10.1103/PhysRevMaterials.5.035602
Project
Gobierno de España. SEV-2012-0249
Editor's Version
https://doi.org/10.1103/PhysRevMaterials.5.035602
Subjects
Amorphous Systems; Approximate Analysis; Experimental System; Finite Sample Sizes; Finite Size Effect; Granular Packings; Shear Storage Modulus; Spatial Dimension; Física
URI
http://hdl.handle.net/10486/705622
Rights
© 2021 American Physical Society.

Abstract

We present a theory of viscoelasticity of amorphous media, which takes into account the effects of confinement along one of three spatial dimensions. The framework is based on the nonaffine extension of lattice dynamics to amorphous systems, or nonaffine response theory. The size effects due to the confinement are taken into account via the nonaffine part of the shear storage modulus G' . The nonaffine contribution is written as a sum over modes in k-space. With a rigorous argument based on the analysis of the k-space integral over modes, it is shown that the confinement size L in one spatial dimension, e.g., the z axis, leads to a infrared cutoff for the modes contributing to the nonaffine (softening) correction to the modulus that scales as L−3. Corrections for finite sample size D in the two perpendicular dimensions scale as ∼ (L/D)4, and are negligible for L << D. For liquids it is predicted that G' ∼ L−3 is in agreement with a previous more approximate analysis, whereas for amorphous materials G' ∼ G' bulk + βL−3. For the case of liquids, four different experimental systems are shown to be very well described by the L−3 law. The theory can also explain previous simulation data of confined jammed granular packings
Show full item record

Files in this item

Thumbnail
Name
8898747.pdf
Size
929.8Kb
Format
PDF

Refworks Export

Google™ Scholar:Phillips, Anthony E. - Baggioli, Matteo - Sirk, Timothy W. - Trachenko, Kostya - Zaccone, Alessio

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [17129]

Related items

Showing items related by title, author, creator and subject.

  • Effective theory of superconductivity in strongly coupled amorphous materials 

    Baggioli, Matteo; Setty, Chandan; Zaccone, Alessio
    2020-06-03
  • Field theory of dissipative systems with gapped momentum states 

    Baggioli, Matteo; Vasin, M.; Brazhkin, V. V.; Trachenko, K.
    2020-07-13
  • Low frequency propagating shear waves in holographic liquids 

    Baggioli, Matteo; Trachenko, Kostya
    2019-03-01
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad