Mirror energy differences above the 0 f7/2 shell: First γ -ray spectroscopy of the Tz = −2 nucleus 56Zn
Entity
UAM. Departamento de Física TeóricaPublisher
ElsevierDate
2021-11-19Citation
10.1016/j.physletb.2021.136784
Physics Letters 823.10 (2021): 136784
ISSN
0370-2693 (print); 1873-2445 (online)DOI
10.1016/j.physletb.2021.136784Project
Gobierno de España. FPA2017-84756-C4-2-P; Gobierno de España. PGC-2018-94583; Gobierno de España. SEV-2016-0597Editor's Version
https://doi.org/10.1016/j.physletb.2021.136784Subjects
Energy Difference; Nucleons; Symmetry Breaking; FísicaNote
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMRights
© 2021 The Author(s)Abstract
Excited states in 56Zn were populated following one-neutron removal from a 57Zn beam impinging on a
Be target at intermediate energies in an experiment conducted at the Radioactive Isotope Beam Factory at RIKEN. Three γ rays were observed and tentatively assigned to the 6+ → 4+ → 2+ → 0+ yrast sequence. This turns 56Zn into the heaviest Tz = −2 nucleus in which excited states are known. The excitationenergy differences between these levels and the isobaric analogue states in the Tz = +2 mirror partner, 56Fe, are compared with large-scale shell-model calculations considering the full p f valence space and various isospin-breaking contributions. This comparison, together with an analysis of the mirror energy differences in the A = 58, Tz = ±1 pair 58Zn and 58Ni, provides valuable information with respect to
the size of the monopole radial and the isovector multipole isospin-breaking terms in the region above
doubly-magic 56Ni
Files in this item
Google Scholar:Fernández, A.
-
Poves Paredes, Alfredo
This item appears in the following Collection(s)
Related items
Showing items related by title, author, creator and subject.
-
Spectroscopy of odd-mass cobalt isotopes toward the N=40 subshell closure and shell-model description of spherical and deformed states
Recchia, F.; Lenzi, S. M.; Lunardi, S.; Farnea, E.; Gadea, A.; Mǎrginean, N.; Napoli, D. R.; Nowacki, Frédéric; Poves Paredes, Alfredo; Valiente-Dobón, J. J.; Axiotis, M.; Aydin, S.; Bazzacco, D.; Benzoni, G.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Bracco, A.; Bucurescu, D.; Caurier, E.; Corradi, L.; De Angelis, G.; Della Vedova, F.; Fioretto, E.; Gottardo, A.; Ionescu-Bujor, M.; Iordachescu, A.; Leoni, S.; Mǎrginean, R.; Mason, P.; Menegazzo, R.; Mengoni, D.; Million, B.; Montagnoli, G.; Orlandi, R.; Pollarolo, G.; Sahin, E.; Scarlassara, F.; Singh, R. P.; Stefanini, A. M.; Szilner, S.; Ur, C. A.; Wieland, O.
2012-06-06