UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

Deep learning for the modeling and inverse design of radiative heat transfer

Author
García Esteban, Juan Joséuntranslated; Bravo Abad, Jorgeuntranslated; Cuevas Rodríguez, Juan Carlosuntranslated
Entity
UAM. Departamento de Física Teórica de la Materia Condensada
Publisher
American Physical Society
Date
2021-12-02
Citation
10.1103/PhysRevApplied.16.064006
Physical Review Applied 16.6 (2021): 064006
 
 
 
ISSN
2331-7019 (online)
DOI
10.1103/PhysRevApplied.16.064006
Project
Gobierno de España. RTI2018-098452-B-I00; Gobierno de España. PID2020-114880GB-I00
Editor's Version
https://doi.org/10.1103/PhysRevApplied.16.064006
Subjects
Cooling Systems; Deep Neural Networks; Inverse Problems; Network Architecture; Numerical Methods; Física
URI
http://hdl.handle.net/10486/705719
Rights
© 2021 American Physical Society

Abstract

Deep learning is having a tremendous impact in many areas of computer science and engineering. Motivated by this success, deep neural networks are attracting increasing attention in many other disciplines, including the physical sciences. In this work, we show that artificial neural networks can be successfully used in the theoretical modeling and analysis of a variety of radiative-heat-transfer phenomena and devices. By using a set of custom-designed numerical methods able to efficiently generate the required training data sets, we demonstrate this approach in the context of three very different problems, namely (i) near-field radiative heat transfer between multilayer systems that form hyperbolic metamaterials, (ii) passive radiate cooling in photonic crystal slab structures, and (iii) thermal emission of subwavelength objects. Despite their fundamental differences in nature, in all three cases we show that simple neural-network architectures trained with data sets of moderate size can be used as fast and accurate surrogates for doing numerical simulations, as well as engines for solving inverse design and optimization in the context of radiative heat transfer. Overall, our work shows that deep learning and artificial neural networks provide a valuable and versatile toolkit for advancing the field of thermal radiation
Show full item record

Files in this item

Thumbnail
Name
9036303.pdf
Size
2.992Mb
Format
PDF

Refworks Export

Google™ Scholar:García Esteban, Juan José - Bravo Abad, Jorge - Cuevas Rodríguez, Juan Carlos

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16522]

Related items

Showing items related by title, author, creator and subject.

  • Magnetic field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters 

    Moncada-Villa, E.; Fernández-Hurtado, Víctor; García-Vidal, F. J.; García-Martín, A.; Cuevas Rodríguez, Juan CarlosAutoridad UAM
    2015-09-14
  • Exploring the limits of super-planckian far-field radiative heat transfer using 2D materials 

    Fernández-Hurtado, Víctor; Fernández Domínguez, Antonio IsaacAutoridad UAM; Feist, Johannes; García-Vidal, Francisco J.; Cuevas Rodríguez, Juan CarlosAutoridad UAM
    2018-06-19
  • Super-Planckian far-field radiative heat transfer 

    Fernández-Hurtado, Víctor; Fernández Domínguez, Antonio IsaacAutoridad UAM; Feist, Johannes; García-Vidal, F. J.; Cuevas Rodríguez, Juan CarlosAutoridad UAM
    2018-01-08
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram