UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

A method for approximating optimal statistical significances with machine-learned likelihoods

Author
Arganda, Ernesto; Marcano Imaz, Xabieruntranslated; Martín Lozano, Víctor; Medina, Aníbal D.; Pérez, Andrés D.; Szewc, Manuel; Szynkman, Alejandro
Entity
UAM. Departamento de Física Teórica
Publisher
Springer
Date
2022-11-05
Citation
10.1140/epjc/s10052-022-10944-3
The European Physical Journal C 82.11 (2022): 993
 
 
 
ISSN
1434-6044 (print); 1434-6052 (online)
DOI
10.1140/epjc/s10052-022-10944-3
Project
Gobierno de España. CEX2020-001007-S; Gobierno de España. PID2019-108892RB-I00; info:eu-repo/grantAgreement/EC/H2020/860881/EU//HIDDeN
Editor's Version
https://doi.org/10.1140/epjc/s10052-022-10944-3
Subjects
Substructure; Gluons; Top Quark; Física
URI
http://hdl.handle.net/10486/705906
Rights
© The Author(s) 2022

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

Machine-learning techniques have become fundamental in high-energy physics and, for new physics searches, it is crucial to know their performance in terms of experimental sensitivity, understood as the statistical significance of the signal-plus-background hypothesis over the background-only one. We present here a simple method that combines the power of current machine-learning techniques to face high-dimensional data with the likelihood-based inference tests used in traditional analyses, which allows us to estimate the sensitivity for both discovery and exclusion limits through a single parameter of interest, the signal strength. Based on supervised learning techniques, it can perform well also with high-dimensional data, when traditional techniques cannot. We apply the method to a toy model first, so we can explore its potential, and then to a LHC study of new physics particles in dijet final states. Considering as the optimal statistical significance the one we would obtain if the true generative functions were known, we show that our method provides a better approximation than the usual naive counting experimental results
Show full item record

Files in this item

Thumbnail
Name
9120709.pdf
Size
1.363Mb
Format
PDF

Refworks Export

Google™ Scholar:Arganda, Ernesto - Marcano Imaz, Xabier - Martín Lozano, Víctor - Medina, Aníbal D. - Pérez, Andrés D. - Szewc, Manuel - Szynkman, Alejandro

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [18125]

Related items

Showing items related by title, author, creator and subject.

  • Towards a method to anticipate dark matter signals with deep learning at the LHC 

    Arganda, Ernesto; Medina, Aníbal D.; Pérez, Andrés D.; Szynkman, Alejandro
    2022-02-01
  • Model-independent search strategy for the lepton-flavor-violating heavy Higgs boson decay to τμ at the LHC 

    Arganda, Ernesto; Marcano Imaz, XabierAutoridad UAM; Mileo, Nicolás I.; Morales, Roberto A.; Szynkman, Alejandro
    2019-09-01
  • Higgs effective Hlilj vertex from heavy νR and applications to LFV 

    Herrero Solans, María JoséAutoridad UAM; Arganda, Ernesto; Marcano Imaz, XabierAutoridad UAM; Morales, Roberto; Szynkman, Alejandro
    2017-10-06
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad