UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

A universal Hölder estimate up to dimension 4 for stable solutions to half-Laplacian semilinear equations

Author
Cabré, Xavier; Sanz-Perela, Tomás
Entity
UAM. Departamento de Matemáticas
Publisher
Elsevier
Date
2022-02-11
Citation
10.1016/j.jde.2022.02.001
Journal of Differential Equations 317 (2022): 153-195
 
 
 
ISSN
0022-0396 (print); 1090-2732 (online)
DOI
10.1016/j.jde.2022.02.001
Project
Gobierno de España. MDM-2014-0445
Editor's Version
https://doi.org/10.1016/j.jde.2022.02.001
Subjects
Half-Laplacian; Stable solutions; Extremal solution; Interior estimates; Dirichlet problem; Matemáticas
URI
http://hdl.handle.net/10486/705914
Rights
© 2022 Elsevier Inc.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Abstract

We study stable solutions to the equation (−∆)1/2u = f (u), posed in a bounded domain of Rn. For nonnegative convex nonlinearities, we prove that stable solutions are smooth in dimensions n ≤ 4. This result, which was known only for n = 1, follows from a new interior Hölder estimate that is completely independent of the nonlinearity f . A main ingredient in our proof is a new geometric form of the stability condition. It is still unknown for other fractions of the Laplacian and, surprisingly, it requires convexity of the nonlinearity. From it, we deduce higher order Sobolev estimates that allow us to extend the techniques developed by Cabré, Figalli, Ros-Oton, and Serra for the Laplacian. In this way we obtain, besides the Hölder bound for n ≤ 4, a universal H1/2 estimate in all dimensions. Our L∞ bound is expected to hold for n ≤ 8, but this has been settled only in the radial case or when f (u) = λeu. For other fractions of the Laplacian, the expected optimal dimension for boundedness of stable solutions has been reached only when f (u) = λeu, even in the radial case
Show full item record

Files in this item

Name
9048689ps.pdf
Size
2.390Mb
Format
PDF

Refworks Export

Google™ Scholar:Cabré, Xavier - Sanz-Perela, Tomás

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [16522]

Related items

Showing items related by title, author, creator and subject.

  • A universal Hölder estimate up to dimension 4 for stable solutions to half-Laplacian semilinear equations 

    Cabré, Xavier; Sanz-Perela, Tomás
    2022-02-11
  • Growing solutions of the fractional p-Laplacian equation in the Fast Diffusion range 

    Vázquez, Juan Luis
    2022-01-01
  • Error analysis of non inf-sup stable discretizations of the time-dependent Navier-Stokes equations with local projection stabilization 

    De Frutos, Javier; García-Archilla, Bosco; John, Volker; Novo Martín, JuliaAutoridad UAM
    2018-07-18
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram
 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram