Show simple item record

dc.contributor.authorCistaro, Giovanni Consalvo 
dc.contributor.authorMalakhov, Mikhail 
dc.contributor.authorEsteve Paredes, Juan José 
dc.contributor.authorUría Álvarez, Alejandro José 
dc.contributor.authorSilva, Rui E.F.
dc.contributor.authorMartín García, Fernando 
dc.contributor.authorPalacios Burgos, Juan José 
dc.contributor.authorPicón Álvarez, Antonio 
dc.contributor.otherUAM. Departamento de Física de la Materia Condensadaes_ES
dc.contributor.otherUAM. Departamento de Químicaes_ES
dc.date.accessioned2023-01-18T09:38:16Z
dc.date.available2023-01-18T09:38:16Z
dc.date.issued2022-12-08
dc.identifier.citationJournal of Chemical Theory and Computation 19 (2023): 333−348en_US
dc.identifier.issn1549-9618 (print)en_US
dc.identifier.issn1549-9626 (online)en_US
dc.identifier.urihttp://hdl.handle.net/10486/705927
dc.description.abstractIn this manuscript, we present a theoretical framework and its numerical implementation to simulate the out-of-equilibrium electron dynamics induced by the interaction of ultrashort laser pulses in condensed-matter systems. Our approach is based on evolving in real time the density matrix of the system in reciprocal space. It considers excitonic and nonperturbative light−matter interactions. We show some relevant examples that illustrate the efficiency and flexibility of the approach to describe realistic ultrafast spectroscopy experiments. Our approach is suitable for modeling the promising and emerging ultrafast studies at the attosecond time scale that aim at capturing the electron dynamics and the dynamical electron−electron correlations via X-ray absorption spectroscopyen_US
dc.description.sponsorshipG.C., M.M., and A.P. acknowledge Comunidad de Madrid through TALENTO Grant Ref 2017-T1/IND-5432 and 2021- 5A/IND-20959, Grants Ref RTI2018-097355-A-I00 and ref PID2021-126560NB-I00 (MCIU/AEI/FEDER, UE), and computer resources and assistance provided by Centro de Computación Científica de la Universidad Autónoma de Madrid (FI-2021-1-0032), Instituto de Biocomputación y Física de Sistemas Complejos de la Universidad de Zaragoza (FI-2020-3-0008), and Barcelona Supercomputing Center (FI2020-1-0005, FI-2021-2-0023, FI-2021-3-0019). J.J.P., J.J.E.-P., and A.J.U.-Á . acknowledge funding from Grant No. PID2019- 109539GB-C43 (MCIU/AEI/FEDER, UE), the María de Maeztu Program for Units of Excellence in R&D (Grant No. CEX2018-000805-M), the Comunidad Autónoma de Madrid through the Nanomag COST-CM Program (Grant No. S2018/NMT-4321), and the Generalitat Valenciana through Programa Prometeo/2021/01. F.M. acknowledges the MICIN project PID2019-105458RB-I00, the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2016-0686), and the “María de Maeztu” Programme for Units of Excellence in R&D (CEX2018-000805-M). R.E.F.S. acknowledges support from the fellowship LCF/BQ/PR21/11840008 from “La Caixa” Foundation (ID 100010434)en_US
dc.format.extent16 pag.es_ES
dc.format.mimetypeapplication/pdfen_US
dc.language.isoengen
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofJournal of Chemical Theory and Computationen_US
dc.rights© 2022 American Chemical Societyen_US
dc.titleTheoretical approach for Electron Dynamics and Ultrafast Spectroscopy (EDUS)en_US
dc.typearticleen_US
dc.subject.ecienciaFísicaes_ES
dc.subject.ecienciaQuímicaes_ES
dc.relation.publisherversionhttps://doi.org/10.1021/acs.jctc.2c00674en_US
dc.identifier.doi10.1021/acs.jctc.2c00674en_US
dc.identifier.publicationfirstpage333es_ES
dc.identifier.publicationlastpage348es_ES
dc.identifier.publicationvolume19es_ES
dc.relation.projectIDGobierno de España. RTI2018-097355-A-I00es_ES
dc.relation.projectIDGobierno de España. PID2019-109539GB-C43es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionen_US
dc.rights.ccReconocimientoes_ES
dc.rights.accessRightsopenAccessen_US
dc.relation.dataset10.21950/KILVLZ
dc.facultadUAMFacultad de Cienciases_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record