UAM | UAM_Biblioteca | Unified search engine | Scientific Production Portal | UAM Research Data Repository
Biblos-e Archivo
    • español
    • English
  • English 
    • español
    • English
  • Log in
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search Biblos-e Archivo

Advanced Search

Browse

All of Biblos-e ArchivoCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsFacultiesThis CollectionBy Issue DateAuthorsTitlesSubjectsFaculties

My Account

Log inRegister

Statistics

View Usage Statistics

Help

Information about Biblos-e ArchivoI want to submit my workFrequently Asked Questions

UAM_Biblioteca

View Item 
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item
  •   Biblos-e Archivo
  • 1 - Producción científica en acceso abierto de la UAM
  • Producción científica en acceso abierto de la UAM
  • View Item

An artificial intelligence-based tool for data analysis and prognosis in cancer patients: results from the clarify study

Author
Torrente, María; Sousa, Pedro A.; Hernández, Roberto; Blanco, Mariola; Calvo de Juan, Virginiauntranslated; Collazo, Ana; Guerreiro, Gracinda R.; Núñez, Beatriz; Pimentao, Joao; Sánchez, Juan Cristóbal; Campos Yuste, Manueluntranslated; Costabello, Luca; Novacek, Vit; Menasalvas, Ernestina; Vidal, María Esther; Provencio Pulla, Marianountranslated
Publisher
MDPI
Date
2022-08-22
Citation
10.3390/cancers14164041
Cancers 14.16 (2022): 4041
 
 
 
ISSN
2072-6694 (online)
DOI
10.3390/cancers14164041
Funded by
This work was supported by the EU H2020 program, under grant agreement No.875160 (Project CLARIFY) and Centro de Matemática e Aplicações, UID (MAT/00297/2020), Portuguese Foundation of Science and Technology
Project
info:eu-repo/grantAgreement/EC/H2020/875160;
Editor's Version
https://doi.org/10.3390/cancers14164041
Subjects
artificial intelligence; cancer patients; data integration; decision support system; patient stratification; precision oncology; Medicina
URI
http://hdl.handle.net/10486/705971
Rights
© 2022 by the authors

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional.

Abstract

Artificial intelligence (AI) has contributed substantially in recent years to the resolution of different biomedical problems, including cancer. However, AI tools with significant and widespread impact in oncology remain scarce. The goal of this study is to present an AI-based solution tool for cancer patients data analysis that assists clinicians in identifying the clinical factors associated with poor prognosis, relapse and survival, and to develop a prognostic model that stratifies patients by risk. We used clinical data from 5275 patients diagnosed with non-small cell lung cancer, breast cancer, and non-Hodgkin lymphoma at Hospital Universitario Puerta de Hierro-Majadahonda. Accessible clinical parameters measured with a wearable device and quality of life questionnaires data were also collected. Using an AI-tool, data from 5275 cancer patients were analyzed, integrating clinical data, questionnaires data, and data collected from wearable devices. Descriptive analyses were performed in order to explore the patients’ characteristics, survival probabilities were calculated, and a prognostic model identified low and high-risk profile patients. Conclusion: Overall, the reconstruction of the population’s risk profile for the cancer-specific predictive model was achieved and proved useful in clinical practice using artificial intelligence. It has potential application in clinical settings to improve risk stratification, early detection, and surveillance management of cancer patients
Show full item record

Files in this item

Thumbnail
Name
artificial_torrente_cancers_2022.pdf
Size
1.863Mb
Format
PDF
Description
Artículo principal

Refworks Export

Google™ Scholar:Torrente, María - Sousa, Pedro A. - Hernández, Roberto - Blanco, Mariola - Calvo de Juan, Virginia - Collazo, Ana - Guerreiro, Gracinda R. - Núñez, Beatriz - Pimentao, Joao - Sánchez, Juan Cristóbal - Campos Yuste, Manuel - Costabello, Luca - Novacek, Vit - Menasalvas, Ernestina - Vidal, María Esther - Provencio Pulla, Mariano

This item appears in the following Collection(s)

  • Producción científica en acceso abierto de la UAM [18125]

Related items

Showing items related by title, author, creator and subject.

  • Chronodisruption and ambulatory circadian monitoring in cancer patients: beyond the body clock 

    Almaida-Pagan, Pedro F.; Torrente, María; Campos Yuste, ManuelAutoridad UAM; Provencio Pulla, MarianoAutoridad UAM; Madrid, Juan Antonio; Franco Pérez, Fernando FabioAutoridad UAM; Morilla, Beatriz Rodríguez; Cantos, Blanca; Sousa, Pedro A.; Martínez Madrid, María José; Pimentao, Joao; Rol, María Ángeles
    2022-01-21
  • Long-term follow up of Hodgkin lymphoma 

    Pérez-Callejo, David; Zurutuza, Lorea; Royuela Vicente, Ana; Torrente, María; Núñez, Beatriz; Calvo de Juan, VirginiaAutoridad UAM; Méndez, Miriam; Franco, Fernando; Brenes, María Auxiliadora; Sánchez, Juan Cristobal; Provencio Pulla, MarianoAutoridad UAM
    2018-02-20
  • Cancer and sars-cov-2 infection: A third-level hospital experience 

    Calvo de Juan, VirginiaAutoridad UAM; Fernández-Cruz, Ana; Núñez, Beatriz; Blanco, Mariola; Morito, Ana; Martínez, Marta; Traseira, Cristina; Garitaonaindía, Yago; Aguado, Ramón; Ramos, Arturo; Royuela, Ana; Franco, Fernando Fabio; Provencio Pulla, MarianoAutoridad UAM
    2021-05-20
All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad

 

 

All the documents from Biblos-e Archivo are protected by copyrights. Some rights reserved.
Universidad Autónoma de Madrid. Biblioteca
Contact Us | Send Feedback
We are onFacebookCanal BiblosYouTubeTwitterPinterestWhatsappInstagram

Declaración de accesibilidad